Vigenere Cipher

Mark Slater (slides by Ben Morgan and Tom Latham)

UNIVERSITYOF THE UNIVERSITY OF
BIRMINGHAM WARWICK

The Vigenere Cipher

* A polyalphabetic substitution cipher

* The rule to substitute characters changes with each
character in the input text

* Originally described in 1553 by Giovan Battista Bellaso,
but mistakenly attributed to Blaise de Vigenéere (1586)
by 19th Century cryptographers.

* Though occasionally broken before the 19th century, no
published formal attack until Kasiski and Babbage in the
mid 1800s.

Vigenere Cipher Encryption Substitution Rule

« Choose a Keyword W [1, N] characters long.

 Pair each character in Keyword with character in
Plaintext, repeating/truncating Keyword if it is shorter/
longer than Plaintext.

* Replace each character in Plaintext by encrypting it
with a CaesarCipher of Shift equal to the position in
the alphabet of the Keyword character that is paired
with the Plaintext character

Encrypting With the Vigenere Cipher, W=KEY

Plaintext HE L LOWORLD
Keyword
Caesarkncrypt(‘H’,10) CaesarEncrypt(¢0’,4)

S

Ciphertext RIJVSUYVIN

Vigenere Cipher Decryption Substitution Rule

« Choose a Keyword W [1, N] characters long.

 Pair each character in Keyword with character in
CipherText, repeating/truncating Keyword if it is
shorter/longer than CipherText.

* Replace each character in Plaintext by decrypting it
with a CaesarCipher of Shift equal to the position in
the alphabet of the Keyword character that is paired
with the CipherText character.

Decrypting With the Vigeneére Cipher, W=KEY

Ciphertext RIJVSUYVIN
Keyword
CaesarDecrypt(‘R’,10) CaesarDecrypt(¢S’,4)

S

Ciphertext HELLOWORLD

Exercise - Add Vigenere Boiler Plate

 As with the Playfair Cipher, we’ll start with putting the boiler
plate in that we’ll fill in afterwards

* You will need to:
1. Allow the user to give ‘vigenere’ as an option to the *--
cipher’ option

2. Create a basic ‘VigenereCipher’ class skeleton that
contains a std::string member ‘key_" member variable and
the function signatures given on the next slide

3. When given on the command line, create a VigenereClass
object with the given key and call the ‘applyCipher’
function

4. Don’t forget to add documentation and some initial tests!

Exercise - Vigenere Function Signatures

VigenereCipher: :VigenereCipher (\

vold Vigenere(Cipher: :setKey(\ const std::string& key)

const std::string& key)

i
t // Set the given key
, setKey(key);

std: :string VigenereCipher: :applyCipher(const std::string& inputText, \
const CipherMode /*cipherMode*/) const
{

¥

return inputText;

Composition in (++

Mark Slater (slides by Tom Latham)

UNIVERSITYOF THE UNIVERSITY OF
BIRMINGHAM WARWICK

Composition of objects

« As we've mentioned before, re-using
code is a good thing

 Avoids duplicating code and hence reduces
the burden of maintenance and the
likelihood of bugs creeping in

- Object composition is an excellent way
of re-using already tested code

- Composition means having a data
member of a class that is itself an
Instance of another class

- That data member can then be used by
the containing class to help perform
some of its work for it

- We've actually already been doing this
when we have containers and strings as
data members of our cipher classes

#include <vector>
#1include "Employee.hpp"

class ProjectTeam {

private:
/// The leader of the team
Employee teamlLeader_;

/// Other members of the team
std: :vector<Employee> team_;

}

Using composition in the Vigenére cipher implementation

- We've seen that the Vigenere cipher algorithm involves using a series of
Caesar ciphers with different keys

- We don't want to re-implement the Caesar cipher algorithm within our
Vigenere cipher class, we want to be able to reuse the code we've already
written and tested

« We can do so by having data members of the Vigenere(Cipher class that
are themselves object instances of the CaesarCipher class

- We can then delegate some of the work of performing the encryption to those
objects

Using composition in the Vigenére cipher implementation

* In particular, we want to have a
number of CaesarCipher objects
that are each associated with a #include <map>

character in the key word #include <string>
#include "CaesarCipher.hpp"

* We can do this by using the
std: :map, which we used last
week, to create a lookup table

class VigenereCipher {

private:
- This table should be filled in the /// The cipher key
setKey member function std::string key_ = "";

/// Lookup table
std: :map<char,CaesarCipher> charlLookup_;

» Then in the applyCipher function it |,
can be used to retrieve the
CaesarCipher objects, which can
then be used to encrypt the input
text one letter at a time

(++ Implementation : Vigenere Cipher

* We’ve now got a better idea how to implement the
Vigenere Cipher, so make the following changes:

1. Add the lookup map member variable as in the
previous slide

2. Put in the comment changes as shown in the next
slide

3. Attempt to implement the functions as described In
the comments

13

Exercise - Vigenere Function Signatures

void VigenereCipher::setKey(\
const std::string& key)
{

// Store the key
key_ = key;

// Make sure the key 1s uppercase
// Remove non-alphabet characters

// Check if the key 1is empty and
replace with default i1f so

// loop over the key
// Find the letter position in the
alphabet

// Create a CaesarCipher using
this position as a key

// Insert a std::pair of the
letter and CaesarCipher into the lookup

}

\.

~N

r

std: :string VigenereCipher: :applyCipher(\
const std::string& inputText, \
const CipherMode /*cipherMode*/)
const

{
// For each letter in 1input:
// Find the corresponding letter
in the key,
// repeating/truncating as required

// Find the Caesar cipher from the
lookup

// Run the (de)encryption

// Add the result to the output

return inputText;

14

