Smart pointers

Tom Latham

THE UNIVERSITY OF

WARWICK

Dynamic polymorphism in mpags-cipher

* How can we be taking advantage of dynamic polymorphism in our actual
program?

At the moment we have a switch statement in which we construct the
concrete instances and then use them to either encrypt or decrypt

- Would be cleaner and far more reusable to have a 'factory’ function that
constructs an object instance (the concrete type of which depends on a

supplied argument) and returns it to us (using the base type)

 For our test suite it could also be advantageous to store various ciphers in a
container to be able to loop through them

- Can we do these things with references?

Limitations of references

* For the factory function there is the problem of object lifetime and reference returns
(alluded to when we first introduced references in Day 2)

- But also we cannot use references in containers since they cannot be copied or
assigned to — these are prerequisites for any object being stored in a container (in
fact references are not objects but provide an alias for an object that already exists)

- (Since C++11 areference _wrapper class is available to allow storage of
references in containers but we will not examine that further here)

 In addition to what we mentioned on the previous slide, we also might like to have
one of our polymorphic types as a data member of a class

- But reference data members can only be initialised in the constructor and then
they can never be modified to refer to another object, which is rather limiting

http://en.cppreference.com/w/cpp/utility/functional/reference_wrapper

Smart pointers

* The solution to these various problems is to be able to do dynamic allocation and to
manage the associated memory and ownership issues using smart pointers

- Smart pointers are objects that point to other objects, in particular to objects that
have been dynamically allocated

- What is dynamic allocation? Essentially it means to create objects in an area of
memory (called the free store or heap) that gives them a lifetime beyond the scope
In which the allocation takes place.

 Prior to C++11 the allocation and management was dealt with manually (using new
and delete and raw pointers — more on these next week)

- Since C++11 we have the smart pointers and their helper functions to handle all of
that for us — makes for much safer code!

Smart pointers

« There are three types of smart pointer provided in the C++ standard:
* unique_ptr
- shared_ptr
- weak_ptr

- We will discuss the first two of these (the last is only useful in a handful of situations)
- Smart pointers ensure destruction of the managed object at the appropriate time:

- The unique_ptr is used to enforce sole-ownership of an object. So when the
that one unique_ptr is destroyed (or assigned a new object to manage) it
triggers the destruction of the managed object.

- The shared_ptr is used for shared resources, where there is no one owner. So
when the reference count (i.e. the number of shared_ptr's referring to this
same managed object) falls to zero the managed object is destroyed.

Dynamic allocation with std::make__unique

We want to make a factory function that can construct our objects with dynamic storage
duration and return us sole ownership of those objects. Thus we want to use
std: :unique_ptr and its helper function std: :make_unique.

The return type is a std::unique_ptr to the base type, in this case Vehicle.
The std::unique_ptr's to the concrete types are implicitly converted on the return.

O @® h VehicleFactory.hpp (~/cernbox...ching/2015-16/Day5-Slides) - VIM

O @® . VehicleFactory.cpp (~/cernbox/Teaching/2015-16/Day5-Slides) - VIM

Notes

We select what particular concrete type we
want using an enumeration.

Arguments to the std: :make_unique
function are forwarded on as arguments to
the constructor.

We need C++14 to use
std: :make_unique - it was accidentally
omitted from the C++11 standard!

Either add cxx_std_14 to the
target_compile_features for the
MPAGSCipher library or if you have CMake
version < 3.8 you can instead add the
following lines:

set(CMAKE_CXX_STANDARD 14)
set(CMAKE_CXX_STANDARD_REQUIRED ON)

before the line
set(CMAKE_CXX_EXTENSIONS OFF)
in your top-level CMakelLists.txt file.

Exercise: a Factory Function

- Write a factory function for your cipher classes
* You can use the example on the previous slide as a guide

- Then modify your main code to use this new function to create your cipher
object depending on the corresponding command line option, e.g.

auto aVehicle = vehicleFactory(VehicleType::CAR, nGears);

* You can then use the unique_ptr with the arrow operator "->" instead of

the dot operator ".", e.q.

double speed { aVehicle->currentSpeed() };

Collections of polymorphic types

- We can also use the unique_ptr<Base> as the type to store in collections

« For example, an inventory of vehicles:

std: :vector<std: :unique_ptr<Vehicle>> inventory;

inventory.push_back(vehicleFactory(VehicleTypes::LORRY, nGears));

for (& v : 1nventory) {

std: :cout << v->numberOfGears() << "\n";

Exercise: Test all ciphers using a collection

- Modify your testCipher.cpp code to:

 Create a collection of ciphers and fill it with one of each type, using your
factory function

* Loop through the collection and check that each is encrypting as expected
- Similarly, write another test to check that all are decrypting as expected

* Again, you can use the example on the previous slide as a guide

ADDENDUM

When to use shared_ptr?

- A shared_ptr is used to express a shared ownership of some resource

 More than one client needs to use the resource and it is not obvious that a
particular one of them should be the single owner

« For example, an employee has a company car but there is also an inventory
of all company vehicles, another list of those that are under a particular

service contract, etc.
 This is a case where the resource should be managed by a shared_ptr

 (There is potentially a case for some of those clients to hold weak_ptr's,
which track the object but don't hold a share of the ownership. But this is

probably quite rare.)

11

Abstract Base Classes

 In some cases you can find that you have a lot of duplicated code in (some
of) the concrete classes (not an issue for these cipher classes)

- We could move some of this code up into the pABC but then it wouldn’t be
purely abstract any more and its job is to simply define a type

« So instead we add a new layer in the inheritance structure, an Abstract Base
Class (or ABC), which inherits from the pABC and from which (some of) the
concrete classes inherit (instead of from the pABC)

+ So we have the pABC that defines the type and the ABC that allows some
sharing of implementation

 For example, we could have a MotorVehicle ABC from which Car, Lorry,
etc. inherit but B1cycle does not

12

Protected access

- This is the third category of access specifier (public, protected, private)

- It is useful in any scenario where you have a utility function in an ABC that
needs to be called by the derived classes

 You don’t want it to be publ1c but making it private hides it from the
derived classes

- Making it protected means that it can be accessed by the ABC itself and
any classes that are derived from it

13

