Polymorphism in (++

Tom Latham

THE UNIVERSITY OF

WARWICK

From Static to Dynamic Polymorphism

* “Polymorphism”

- The ability of one generic type to behave in many concrete ways.

- We have already seen this behaviour with the container classes
- Enabled through the use of templates
* The polymorphism is locked at compile time

- Hence this is referred to as static polymorphism

- Today we'll see how to achieve this at run time: dynamic polymorphism
 This is achieved through type-sharing

 In C++, the mechanism for this is public inheritance.

Templated functions

» Consider the two swap functions
on the right - we can see that the
only difference between them is
the type (of the arguments and of
the tmp variable)

- We are duplicating code — and
you can see that this would
proliferate if we wanted to have
other functions to swap two
float’s or two bool’s

» This duplication can be eliminated
using templates

vold swap(double& a, double& b)

{
double tmp {b};

b = a;
a = tmp;
¥
vold swap(int& a, int& b)
{
int tmp {b};
b = a;
a= tmp;
¥

Static polymorphism

 This function template definition
specifies a family of functions that swap
the values of two variables

* We have a single bit of code that can
act in different ways depending on the
type of T — it behaves polymorphically

 However, this difference is locked-in at
compile time with the specification of
the template parameter, either explicitly
or by compiler deduction

 In this particular case, the compiler can
deduce the template parameter from the
type of the arguments

* In some scenarios that isn’t possible, and so
it has to be specified explicitly:

swap<double>(x,y);

« This can also be done even when the
compiler can deduce the type, e.g. to
provide clarity

(

template <typename T>
volid swap(T& a, T& b)
{

E tmp {b};
a ; tmp,

int main()

{
double x {42.3%;

double y {11.2};

swap(X,y);

int 1 {4};
int j {-6};

swap(i,J);

Types

 On the first day we defined four important concepts, including “type™:

A type defines the set of possible values and a set of operations for
an object.

- An object is some memory that holds a value of some type.
- A value is a set of bits interpreted according to a type.
A variable is a named object.

* We've also seen that that there are:
» Built-in types: 1nt, double, char, ..
» User-defined types: CaesarCipher, PlayfairCipher, ..

- Families of types: vector<int>, vector<double>,
vector<char>, ..

Sharing Type

- Software design often throws up cases where a set of types all exhibit an
“Is a Kind Of” relationship to some, more abstract, concept.

- e.g. Car, Bus, Lorry are all “kinds of” vehicle

* In this example, they all have engines that can be started and stopped, they
can be travelling at a given speed, in a certain gear, etc. etc.

- What this means in programming terms is that they all provide the same
Interface, i.e. the same set of public member functions, e.g.

- 1nt changeGear();

- bool startEngine();

Sharing Type in a Strongly Typed Language

- We might want to store instances of, say, Car, Motorbike, Scooter in a container

vector<??> caughtSpeeding;

- We might design a class that has a data member that may change between, say, Car, Motorb1ike,
Scooter as time changes:

class Employee {
private:
7?7 personalVehicle;

s

- Unfortunately, neither is possible directly as C++ is a “strongly typed” language, i.e. we have to
supply, at compile-time, the type “?7”.
+ We need a mechanism to express the type sharing relationship in the code.

Sharing types in mpags-cipher

- By now you have implemented several different ciphers as classes:

» CaesarCipher
» VigenereCipher
» PlayfairCipher

- These are all kinds of cipher and should have the same interface, in particular
the applyCipher function

- We want to be able to express this relationship in our code to avoid
duplication of the code where we used the different ciphers

Public Inheritance

» Type sharing in C++ is achieved through public inheritance.
* You create a new class that contains only the declarations of the member
functions, i.e. the interface, that defines the common, abstract type.

 This class generally contains no data members and has no
Implementation code!

« So you generally only need a header (.hpp) file for this base class

- Classes that want to share this type publicly inherit from this base class.

- What they inherit is the obligation to provide the public member functions
specified by the base class.

Dynamic binding

 Binding time is the moment when a function is assigned to service a message

* Recall that it is the object that determines which code should be called

Message:
Object locates code

)

~
evaluate () {
...1mpl...

3

21bn1p

message for
evaluate service

call code block
providing service

« To obtain dynamic polymorphism, we need binding to be done at run-time,
not at compile time (the default behaviour)

- i.e. we want “late” (or “dynamic”) binding, rather than “early” (or “static”) binding

10

Writing Purely Abstract Base Classes

A "pABC” specifies the interface a type must provide and implement, but no data and no
Implementation for this interface, as shown below.

We see the new C++ keyword virtual prepended to each method signature. This tells the
compiler to defer the decision on which actual code to call until runtime (dynamic binding).

Each method has =0 appended to inform the compiler that no actual implementation is provided
for the method - it is “pure virtual”.

O O h| Vehicle.hpp (~/Documents/Teaching/2015-16/Day5-Slides) - VIM

Notes

It's important to note that the
destructor must be declared and
must be virtual. This is so that
classes inheriting the pABC are
destructed correctly.

This has the side effect that all the
other "special functions" must
also be declared.

The "= default" syntax indicates
that the compiler-supplied
versions should be used (we
don't have to write the code
ourselves) — see next slide for
details.

Aside: Compiler-provided functions

- So what are these "special functions" that we saw on the previous slide?
And why have we not considered them before?

- They all handle resource management and are called:

- Copy constructor

Move constructor

Copy assignment operator

Move assignment operator

Destructor
- If you do not specify them, the compiler creates them for you

* In the majority of cases the compiler-provided versions will work perfectly
well, which is why we have not had to worry about them so far!

12

Aside: Compiler-provided functions

- So what are these "special functions" that we saw on the previous slide?
And why have we not considered them before?

- They all handle resource management and are called:

- Copy constructor
Move constructor \ Allows objects to be
Copy assignment operator

created by copying an
existing instance

Move assignment operator

Destructor
- If you do not specify them, the compiler creates them for you

* In the majority of cases the compiler-provided versions will work perfectly
well, which is why we have not had to worry about them so far!

13

Aside: Compiler-provided functions

- So what are these "special functions" that we saw on the previous slide?
And why have we not considered them before?

- They all handle resource management and are called:

- Copy constructor

Move constructor \ Allows objects to be
Copy assignment operator created by moving an

existing instance

Move assignment operator

Destructor
- If you do not specify them, the compiler creates them for you

* In the majority of cases the compiler-provided versions will work perfectly
well, which is why we have not had to worry about them so far!

14

Aside: Compiler-provided functions

- So what are these "special functions" that we saw on the previous slide?
And why have we not considered them before?

- They all handle resource management and are called:

- Copy constructor

Move constructor Allows objects to be

Copy assignment operator =————————————>EFT(o[gllo Ao} o)A ele]0}Ysl¢
an existing instance

Move assignment operator

Destructor
- If you do not specify them, the compiler creates them for you

* In the majority of cases the compiler-provided versions will work perfectly
well, which is why we have not had to worry about them so far!

15

Aside: Compiler-provided functions

- So what are these "special functions" that we saw on the previous slide?
And why have we not considered them before?

- They all handle resource management and are called:

- Copy constructor

Move constructor

Allows objects to be

Copy assignment operator __— assigned to by moving
Move assignment operator an existing instance

Destructor

- If you do not specify them, the compiler creates them for you

* In the majority of cases the compiler-provided versions will work perfectly
well, which is why we have not had to worry about them so far!

16

Aside: Compiler-provided functions

- So what are these "special functions" that we saw on the previous slide?
And why have we not considered them before?

- They all handle resource management and are called:

- Copy constructor

Move constructor Cleans up any
allocated resources

Copy assignment operator whenthe obiect s
Move assignment operator destroyed
Destructor

- If you do not specify them, the compiler creates them for you

* In the majority of cases the compiler-provided versions will work perfectly
well, which is why we have not had to worry about them so far!

17

Aside: Compiler-provided functions

« However, in some cases there is the need to write custom versions

« Or, as we've done here, the compiler-provided destructor is fine but we need to
specify that it should be virtual

« The problem is that if you specify one of these functions, the compiler assumes that
you are taking over (to some extent or other) and will not provide some or all of
these five functions

- So we have to say explicitly that we want the compiler to continue to provide these
for us, which is what the "= default" does

 For more detalls see:

http://en.cppreference.com/w/cpp/language/rule of three
And links therein.
- We would generally advise to follow the "rule of all or nothing", i.e. to specify none

of them when possible (the "rule of zero") but if you have to specify one you should
do so for all five (the "rule of five")

18

http://en.cppreference.com/w/cpp/language/rule_of_three

Exercise: A pABC for a cipher interface

» Write a pABC called Cipher (put the declaration in
MPAGSCipher/Cipher.hpp)

» It should have one pure virtual member function:
 The function to encrypt and decrypt the supplied text:

virtual std::string applyCipher(const std::string& input,
const CipherMode mode) const = 0;

» It will also need the lines shown on previous slide to obtain
the virtual destructor (and keep all the other compiler-
defined special functions)

- Make sure to add the appropriate documentation comments

19

Recap on Public Inheritance

- It is the mechanism by which we inform the compiler that our concrete
classes - those from which we create object instances - also hold the type of
the abstract base class

 The terms derived class and base class are often used to describe this
Inheritance relationship

« Public inheritance means that all the public methods in the base class remain
public in the derived class (hence they share an interface)

- C++ also allows private and protected inheritance, which result in sharing
of implementation but not shared type

- Composition/Aggregation are better design patterns in these cases

20

Writing Derived Classes 2*

To derive a class, say Car, from our Vehicle base class, we append ": public Vehicle"
(as shown below) to the class declaration, to make Car publicly inherit from Vehicle.

The Car interface must include all the pure virtual function signatures from Vehicle, plus any
functions specific to Car (like the constructor) and data members relevant to Car. The
implementation of the virtual functions for Car follows just as for any other class.

O @ h| Car.hpp (~/Documents/Teaching/2015-16/Day5-Slides) - VIM

Notes

Like any other type, we
have to ensure the
declaration of the base
class is present before we
can inherit from It.

As the derived class will
implement the virtual
functions, these are still
declared virtual in Car, but
we replace the =@ marker
with override.

Exercise: Deriving from Cipher

* Now you can modify your concrete classes
(CaesarCipher, PlayfairCipher,
VigenereCipher) so that they inherit from your new
base class (C1pher)

* Depending on your exact implementation of the
concrete classes, it should be as straightforward as
adding ": public Cipher" to the class declaration
and adding override to the end of the applyCipher

function declaration

22

Dynamic Polymorphism

- We've now got implementations of three concrete types, CaesarCipher,

PlayfairCipher, VigenereCipher, which also have the shared type
Cipher

- Now we can take advantage of the combination of
- Type sharing (via public inheritance)

- Dynamic binding (via virtual member functions)

« SO we can now address a set of objects that are instances of different
derived classes through, e.g. a reference to an object of the base class type

23

Using Dynamic Polymorphism

We can now write functions that have a reference to an object of the base class type as an
argument. As we can see below, via dynamic polymorphism, we can supply this function with
Instances of the different derived classes because they share type with the lbase class.

Each time we call the function, we can get different behaviour depending on the concrete type
of the instance provided.

O @© . main.cpp (~/Documents/Teaching/2015-16/Day5-Slides) - VIM

Notes

We can only achieve
dynamic polymorphism via
references or (smart)
pointers (see later slides).

Exercise: using dynamic polymorphism in a test

- We can now write a function that can take any of our ciphers as a reference
argument

- We can use this to simplify writing tests for our ciphers

- Within a new file (Testing/testCiphers.cpp), implement a function that takes a
cipher, the encrypt/decrypt mode, the input text and the expected output text
and which returns a boolean to indicate whether or not the actual output
matches the expectation:

bool testCipher(const Cipher& cipher, const CipherMode mode,
const std::string& inputText, const std::string& outputText)

- Then write a test that uses this function to test all three of your ciphers

25

