Doxygen

Tom Latham
(based on material from Matt Williams)

THE UNIVERSITY OF

WARWICK

Documentation

. Documentation is just as important as the code itself

. Without docs, you wouldn't know how to use a library:
cppreference.com or the ROOT docs are essential

. You should make sure you always document your code
for external use

. A standard syntax exists called Doxygen

Doxygen syntax

. Doxygen comments are generally placed within the
header (.hpp) files, rather than the source (.cpp) files

. Doxygen comments are marked in a special way

/// Doxygen single-line comments start with three slashes

/**
* Doxygen multi-line comments start with a slash and two stars
* In both cases, Doxygen reads what's inside the comment

*/

. Comments precede the statement that they want to
document

Doxygen commands

. Doxygen provides its own syntax to be used inside comments

. They are detailed in full in the manual but there are a few which are
most commonly used:

. The descriptions of functions, /¥
classes, enums, etc. often need to | * ‘brief This function is amazing

*
be qwte detalled’ SO It's gOOd to * More detailed description of all

also have a short one-liner * the very special stuff it does
description that is used at the */
head of the page — use the veriel Fee;
\brief command /%
* \param key the cipher key
. \param is used to document *{d evCconst size t kv
- vold setKey(const size_t key);
function arguments =
. \return is used to describe the * \return the number of elements
return value A
int size() const;

https://www.stack.nl/~dimitri/doxygen/manual/commands.html

Function example

. Describe the function in a good degree of detalil

. Always document all function parameters and return values

/**
\brief An amazing function which does something very special

A longer description of this function 1s that 1s can be used
to do something very interesting which this longer description

explains 1n detatil.

\param thing the string that we want to convert

¥ ¥ K K K X ¥ ¥ *¥

\return the converted string
*/
std: :string convert(const std::string& thing);

Class example

. Class docs should describe the purpose of the class and give
examples of usage

/**
\brief A cipher encodes and decodes

Cipher 1s an abstract base class which provides the ability to
encode and decode strings based on a key

Use 1t like

\code{.cpp}

class MyCipher : public Cipher {...};
* \endcode

* X X X % ¥ X

* \sihce 0.1.3
*/
class Cipher {

Enum example

. Enums should have a description and each member
should be documented

. A common style is to use 'suffix' comments for the
individual member descriptions

/**
* \brief The rank of the employee
*/

enum class Rank {
Junior, ///< A new person at the company
Senior, ///< Someone who has been here a while
Chief ///< Someone super special

s

Separate page example

. Can create pages of

documentation that are perhaps .

not specific to particular classes * \mainpage Welcome to MPAGS Cipher
. *
or functions c Blan bl
*
_ _ * \section Introduction
. Can create files with .dox * Blah blah
extension that use the Doxygen i
* \subsection Usage
syntax x
*

\code{.cpp}
CaesarCipher c {"4"};

. Or you can use Markdown files — std::cout << c.applyCipher("test");
note that we've simply used our , cnacose
README.md to create the front

page of the documentation

Configuring Doxygen

. Doxygen itself is a program that, given a configuration
file, generates a set of HTML (or LaTeX, or ...) files

. A default configuration file can be created with

$ doxygen -G Doxyfile

but we will just use the one that we've provided in the
Documentation folder of today's git repository

. It's a simple (if slightly long) file, so feel free to read
through it

Automating generation of documentation

Documentation/CMakel ists. txt

#Find the Doxygen tools
find_package(Doxygen REQUIRED)

#Copy Doxyfile.in (in source dir) to Doxyfile (in build dir)
#and replace any @VAR@ with with CMake variables called VAR
configure_file(Doxyfile.in Doxyfile @ONLY)

#Tells CMake how to 'create' ${CMAKE_CURRENT_BINARY_DIR}/html/index.html
add_custom_command(
OUTPUT "${CMAKE_CURRENT_BINARY_DIR}/html/index.html"
COMMAND ${DOXYGEN_EXECUTABLE?}
WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}
DEPENDS Doxyfile.in ${PROJECT_SOURCE_DIR}/MPAGSCipher ${PROJECT_SOURCE_DIR}/README .md
COMMENT "Doxygenating ${PROJECT_NAME}"

)

#Adds the ability to do 'make doc' which will try to create ".../html/index.html"
add_custom_target(doc ALL DEPENDS "${CMAKE_CURRENT_BINARY_DIR}/html/index.html")

10

Exercise - build the documentation

The starter repo for today should contain the necessary files form which to build
the documentation

- Look at what has changed in the top level CMakelL.ists.txt file

- Take a look at the new files in the Documentation subdirectory

Try running "make doc" in your build area

* Open the resulting file in your web browser:
<build_dir>/Documentation/html/index.html

Can you work out how to have the private members of the CaesarCipher class
appear in the documentation?

Throughout the rest of the day, when adding new code always make sure to
document new classes, functions, etc.

11

