Playfair Cipher

Mark Slater

UNIVERSITYOF
BIRMINGHAM

Implementing the Playfair Cipher

* We will spend the afternoon going through the steps to implement
another cipher for your library - the Playfair Cipher

 Thisisanother plain text cipher that has similar restrictions as the
Caesar Cipher but is more complex

 After setting up the initial class stub, we will then introduce Iterators,
Algorithms and Lambdas and use these to implement the actual
cipher

The Playfair Cipher

* The Playfair is based around the idea of exchanging pairs of letters
pased on the positions in a 5x5 grid

* The grid contains a key phrase with repeated letters removed and
chen any remaining letters of the alphabet not contained added to
the end and J replaced with |

* Asan example, below is the grid for the key 'Playfair Example':

P LAY F=-

T RFEF X:M:= =
B C D=G H=
KN 0:Q=S

T U V WeZ

The Playfair Cipher

* To encrypt a message, the following is applied:

> Any repeated characters in a pair are separated by 'X' ora 'Q" if the pair is
already 'XX'

> |fthere are an odd number of characters, a 'Z" is appended
> The message is then broken down into pairs of letters ('Digraphs’)

 The following is an example:

Hello World — HE LX LO WO RL DZ

Z appended as odd

number of characters
Letters split into pairs

X added between the
double 'L's of the digraph

The Playfair Cipher

 After this preparation, the lettersin a PLAYF —
Digraph are found on the 5x5 table I R E>¥X>M
and the following rules applied: B C D G H e ricktemstorightof fach
Letter, Wrap to Left if Needed
1. Ifletters are on the same row, KNOO QS j
replace with letter to the right TUVW Z XM
2. IFin same column, replace with PLIAY F
letters directly below DE
I RIEIX M
3. If they form a rectangle, replace B CIDlG H e i oms seiowesn
with ones from corner on the same K NG g Letter, Wrap to Top if Needed
row Q oD
: : T UIVIW 2
 To decrypt, simply use the inverse of
these 3 rules PLAYTF HT
I R EXM - |
B H&H Rulepé F;_ick Samge Rows,
Opposite Corners
KNOOQS -
T U VW 2

Exercise 1- Add Playfair Boiler Plate

* Inthe repo for today, we have added an additional command line option to
request the playfair or caesar cipher (use -help to check!). To actually create one
though, we need to create a Playfair Cipher class just like the CaesarCipher

* (o through the following steps
1. Create a very basic 'PlayfairCipher' class skeleton that:

> Holds a std::string key that is assigned with a setKey function
> Has a constructor that takes a std::string key and calls the setKey function
> Has an applyCipher function that just prints a message at the moment

2. Create this class with the given key if specified on the cmd line. Note that the
key for the Playfair cipher is a string not an int!

3. Check that you can call the applyCipher function correctly
 Below, you can see the function definitions to be used:

PlayfairCipher: :PlayfairCipher(const std::string& key) {...}

void PlayfairCipher::setKey(const std::string& key) {..}

std::string PlayfairCipher::applyCipher(const std::string& inputText, const CipherMode cipherMode) const

|9/

Exercise 2 - Implementation Steps

* Though the cipher is significantly more complicated than the Caesar
Cipher, we can break down everything in to several easier steps

 Copy the following comments into your 'setKey' and ‘applyCipher’
functions as placeholders for the actual code:

void PlayfairCipher::setKey(\

{

const std::string& key)

// store the original key
key_ = key;

// Append the alphabet

// Make sure the key is upper case
// Remove non-alpha characters

// Change J —> I

// Remove duplicated letters

// Store the coords of each letter

// Store the playfair cihper key map

std::string PlayfairCipher::applyCipher(\

{

const std::string& inputText, \
const CipherMode cipherMode) const

// Change J -» I
// If repeated chars in a digraph add an X or Q if XX
// if the size of input is odd, add a trailing Z

// Loop over the input in Digraphs

// - Find the coords in the grid for each digraph
// - Apply the rules to these coords to get 'new' coords
// - Find the letter associated with the new coords

// return the text
return input;

lterators, Algorithms, Lambdas, Maps

Mark Slater

UNIVERSITYOF
BIRMINGHAM

1. lterators

|terators

* There are several different STL containers apart from string and
vector

* However, some containers can't be accessed by an incrementa

varia
over

e |tera

ble which means you can't just have an index number to
the elements (e.g. map) so you need a more general met

containers. They:

> Point to an element of a container
> Know how to move from one element to the next
> (Can be 'dereferenced’ to access the element it points to

| index
00p
od

ors give a powerful and more generic mechanism for accessing

 Each STL container class provides at least one iterator type as well as
special functions that return iterators for the first and last elements
In a container

10

Iterators Example

#include <vector>

This is an iterator type specifically for
the integer vector class - you can't
have interchangeable iterators

int main()

{
// initialise a vector The 'begin()' method of
std::vector<int> vec = {1, 2, 3/ 4, 5}; std::vector returns an

iterator that points to
the beginning of the
container

// Use iterators to loop - range base S use this behind the scenes
for (auto iter2 { std::begin(vec) F; iter2 != vec.e»‘()\;++iter2)

// create an iterator
std::vector<int>::iterator iterl{ vec.begin() };

{
// dereference to get the element
std: :cout << *iter2 << std::endl; The 'end()' method of std::vector

returns an iterator that points to
ONE PAST the last element of the

// Can also add/subtract from iterato

auto iter3 { std::begin(vec) + 1 }; container
\ Can also use 'auto’ which Use the "*' operator to
will become a lot more dereference the iterator
useful when dealing with and obtain the element it
these long named types! points to

11

Const Iterators

* Aswe have said, it's always best to keep variables const unless you
definitely need to change it

* |terators are a bit different because you usually need to change the
iterator (inc/decrement it) but you will want to keep the thing it
points to constant. This is where const_iterators are used.

#include <vector>

int main()
{
// create a vector
std::vector<int> vec = {1, 2, 3, 4, 5};

// create a const_iterator to point to it
std::vector<int>::const_iterator iter;
iter = vec.chegin();

// This is OK

iter++; Use the ‘cbegin’ and ‘cend’
methods for const versions of
// This isn't the 'begin' and 'end' iterators

xiter = 10;

12

lterators of Other Objects

 You can create iterators from any objects that satisfy the

requirements of an iterator and can then be used in the algorithms,
etc. we'll see later

* This first of these we'll briefly touch on is a ostream iterator

* This can output things to the given stream (with optional delimiter)
Dy assignment:

#include <iostream> NOtEthatYOUhavgto
#include <vector> say what type you're
#include <iterator> streaming to and from

int main() /
{
// create an iterator based On std::cout

std::ostream_iterator<int> cout_iter{std::cout, "\n"};

// output something : :
cout_iter = 5; g Assign to the iterator to

} actually perform the
— input/ouput

13

lterators of Other Objects

* The second iterator we'll look at specifically is an insertion iterator -
pack_insert_iterator

 Thiswill add elements (equivalent to doing push_back in this case) to
the given vector on assignment

* There are many others so do look at the documentation!

#include <iostream>
#include <vector>
Create an jterator "clude <iterator>

that will push_back 4 main ()

to the given vector
// create an iterator to insert elements

\ std::vector<int> vec;
std::back_insert_iterator< std::vector<int> > iterl{vec};

auto iter2 { std::back_inserter(vec) };

// add an element
iter2 = 5;

} ~— Assign to the iterator to

— add the element

14

2. Algorithms

15

Algorithms

At the moment, Iterators probably seem rather over-engineered for
just looping over elements of a container

Where they really show their power is when used in Algorithms

* These are generic programming tasks that use iterators to operate on
containers.

* There are many algorithms available, some of which are:
> copy, copy_if: Copy elements from one range to another
> find, find_if, find_if_not: Find an elementin a range
> generate: Save the result of a function into a range
> max_element: returns the max element in the range

* For a full list, see:

http://en.cppreference.com/w/cpp/algorithm 6

Algorithms - reverse copy Example

* |n this example, we use an algorithm to fill a vector with the reverse
of another vector, i.e. the first element becomes the last, etc.

 This would normally involve a 'for' loop with some non-trivial logic
within it but with the algorithm is reduced to one line!

#include <vector>
#include <algorithm>

The reverse vector must
be the same size as the

int main() range use to fill it

{

// create a vector
std::vector<int> vec = {1, 2, 3, 4, 5}

Specify the ranges to be used
using iterators - begin() and
// create one to take the reverse end() in this case

// Note: need to create and then resize!
std::vector<int> rev;
rev.resize(vec.size());
Can also use a

// fill it - rev will now contain 5, 4, 3, 2, 1 back_inserter to fill
std: :reverse_copy(vec.begin(), vec.end(), rev.begin()),/ an empty vector

// or use a back_inserter instead
std::vector<int> rev2;
std::reverse_copy(vec.begin(), vec.end(), std::back_inserter(rev2));

17

Algorithms - sort and copy Example

* For this example, we'll use the 'sort' algorithm to sort a vector in place

» We will them use 'copy’ and a std::cout iterator to output the result

#include <vector>
#include <algorithm>
#include <iterator>

int main()

{

// create a vector
std::vector<int> vec = {1, 20, 3, 40, 5, 50};

// sort the vector in place
std::sort(vec.begin(), vec.end());

// create an iterator for std::cout
std: :ostream_iterator<int> cout_iter{ std::cout,

// output values
std: :copy(vec.begin(), vec.end(), cout_iter);

\n" };

'copy’ using the
std::cout iterator just
outputs each element

copied

Algorithms - Why use them?

* You may be thinking '"Why should I use algorithms? -1 can just do my own
loops'

 Scott Meyers 'Effective STL' book gives three reasons for preferring
algorithms over hand written loops:

> Efficiency: Quite probably more efficient (Not quaranteed but likely!)
> Correctness: Less code written means fewer places for bugs
> Maintainability: Code is often clearer and more straightforward

 Scientific software can shy away from algorithms because of efficiency
concerns (or lack of knowledge about the efficiency)

* However, you should generally prefer clear and simple code until a
performance problem is found - don't prematurely optimise!

* There are times when algorithms are less efficient, but you should be sure

about this through testing and profiling before changing the code! o

Exercise 3 - Playfair Cipher Implementation

* So we can now start doing the implementation of the Playfair Cipher using
Algorithms. We'll start with the setKey function:

void PlayfairCipher::setKey(const std::string& key)

{
// store the original key _
key_ = key; Storing the key and
appending the alphabet can
// Append the alphabet be done without algorithms
// Make sure the key is upper case
// Remove non-alpha characters
// Change J —> I
// Remove duplicated letters Use the std::transform
// Store the coords of each letter algg;ﬁggyzm)%he
// Store the playfair cihper key map std::toupper!) function to
} change to upper case

20

3. Lambdas

21

What are Lambdas?

Lambdas can basically be thought of as 'inline' function definitions then can then
be passed around just like any other variable

In other words, they allow you to define a function within a code block just as you
would any other object and pass it to a function or assign to a variable

This can become very useful for extending algorithms or a providing a way for the
calling code to specify the precise implementation of a given programming
concept without the overhead of a 'formal’ function definition

For example, you may have an address book class that provides a generic search
algorithm but the specifics of how you search can be decided by the calling code,
e.g. by first or last name, address, etc.

You can just give a general search function that takes a lambda (i.e. function
definition) and calls this function when performing the search

This can then be provided either by a usual function definition or as a lambda

Lambdas have one major advantage over traditional functions as well - they can

access variables that were defined in the scope of the calling code
22

Generalising Algorithms

 So how does that help us with our algorithm use?

At present, the algorithms we've seen are good for their specific
purpose but probably seem a bit limited

 You are either restricted to using already available functions or
writing a standalone function away from where it is needed just for a
one line use

 Thisis where Lambdas can be used: Instead of having to define a
function well away from the calling scope that is probably only
relevant for that scope, it can be put 'inline’

 Plus, as just mentioned, you can provide different functions that can
manipulate locally defined variables

23

Lambda Syntax and Declaration

 Lambdas are defined using the '[]' syntax followed by a normal

function definition

int main()

{

Create a lambda function
that returns the number to
store and pass this as the
function that 'generate’ calls

// use the generate algorithm with a lambda to
// fill a vector with 7s

std: :vector<int> vec{};

vec.resize(10);

std: :generate(vec.begin(), vec.end(), [] () { return 7; });

// create a vector As the return value can be
std::vector<int> vec = {1, 20, 3, 40, 5, 50}; determined by the compiler
in this case, you don't have
// create an @terator for std::cout to give it explicitly
std::ostream_iterator<int> cout_iter{ std::cout, "\n 7,
// output values greater than 10 _g— COPy-'freq””esa
auto func = [] (int val) { function that takes the
if (val > 9) Create and store a same argument type as
return true; lambda.functlon.that that held by the
else checks if a the given Y
return false; value is greater than 9
}:

std::copy_if(vec.begin(), vec.end(), cout_iter, func);

24

Exercise 4 - Playfair Cipher Implementation

* Now we can use lambdas, we'll return to the Playfair Cipher and do the next
bit of implementation!

void PlayfairCipher::setKey(const std::string& key)

{

Use the std::remove _if algorithm
with a lambda that simply returns
the opposite of isalpha. NOTE:
this doesn't actually remove

// store the original key anything! It reorders the
key_ = key; container with the objects to be
kept at the beginning. It the

// Append the alphabet returns an iterator that can be
// Make sure the key is upper case used with ‘erase’
// Remove non-alpha characters : :

std::string strl = "Text with some spaces";

// reorder string and return iter to start of chars to erase
// Change J -> I auto iter = std::remove(strl.begin(), strl.end(), ' ')

// actually erase
// Remove duplicated etters strl.erase(iter,strl.end());

//
//

Store the coords of each letter

Store the playfair cihper “key map

You can now use a lambda
along with the "transform!'

algorithm to perform this
gorithm to perform thi o5

Variable Capture

* What makes lambdas even more powerful is the idea of variable capture

 This means that you can use local variables in the lambda Function, something
you couldn't do with a normal function declared outside the scope

* To do this, you simply add an option between the brackets to indicate what
capture you want to do:

> []- Don't capture anything

> [&] - Capture any referenced variable by reference

> [=] - Capture any referenced variable by value (i.e. make a copy)
> [foo, &bar] - Capture 'foo’ by value and 'bar' by reference

> [this] - Capture the 'this' pointer of the enclosing class

* This gives you a lot of power for using locally declared variables in algorithms and
outside the calling code

 Be careful with capturing by reference and storing the lambda - the captured
variables would be destroyed on leaving the scope and any further calls to the
lambda would fail 26

Variable Capture Example

#include <vector>

int main()

{
// create a vector
std::vector<int> vec = {1, 2, 3, 4, 5};
int i{0}, j{10};

// capture by reference - you get 7, 14, 21...
std: :generate(vec.begin(), vec.end(), [&] () { i+=7; return 1i; });

// capture by value and reference
std::generate(vec.begin(), vec.end(), [1,&]] () { j+=7; return ixj; });

// capture by value - this will fail as 'i' is read-only
std::generate(vec.begin(), vec.end(), [=] () { i+=7; return 1i; });

27

Exercise 5 - Playfair Cipher Implementation

» We can now continue on to the next part of the Playfair Cipher

This will be another use of
string.erase and remove _if as you
// store the original key did with the non-alpha characters.
key_ = key;

void PlayfairCipher::setKey(const std::string& key)
{

However, this time you'll need a

// Append the alphabet lambda Function that checks

// Make sure the key is upper case against a stored string containing
all the encountered letters so far
// Remove non-alpha characters (string.find is useful here). This is

where variable capture is needed -

Ch J > 1
// Change > declare the encountered letters

// Remove duplicated letters string BEFORE the function and
then use it in the lambda function
// Store the coords of each letter 50 the same encountered

// Store the playfair cihper key map characte(s are add.ed to'the same
} string each iteration

4. Maps and Pairs

29

Maps and Pairs

Up until now, we've only dealt with sequence containers like std::string and
std::vector but there are also Associative Containers like std::map

Each value stored is also associated with a key which allows fast retrieval of
elements based on that key

These key-value combinations in maps are grouped together using the std::pair
type from which you can access the ‘first' or 'second’ elements of the pair

These 'pairs' can also be useful in other situations, not just with std::maps

As with vectors, elements can be added and iterators used to cycle through the
them though in this case, the iterators point to std::pairs

They work in a very similar way to dictionaries in python

Note that when dealing with maps, it can become very useful to use 'using .. =.."

or typedefs - this will create new 'labels’ for types to save typing

30

Map and Pair Example

#include <map>
#include <iostream>

int main()

{

// Create a new label for the type — could also use 'typedef'

using Str2IntMap = std::map<std

::string, int>;

// create an instance of this map

Str2IntMap mymap;

// create a pair and insert it using either pair or value_type
std::pair< std::string, int > po{ "A", 1 };
auto pl { std::make_pair("B", 2) };

Str2IntMap::value_type p2{ "C", 3 }; . .
mymap.insert(p@); 'find" returns an iterator
mymap.insert(pl); that points to the
mymap.insert(p2); appropriate std::pair - note
Use auto to // Use the subscript notation instead you should (almost) always
avoid long type mymap["C"] = 3; check it's not equal to the
names end of the container!

// Find elements in the map
auto iter = mymap.find("A");

td::cout << (xiter).first << ":

" << (xiter).second << std::endl;

// Use range based for loop to print the map

for (auto p : mymap)
{

}

std::cout << p.first << ":

" << p.second << std::endl;

31

Exercise 6 - Playfair Cipher Implementation

» We can now tackle the last part of the setKey function in the Playfair
Cipher

void PlayfairCipher::setKey(const std::string& key)
{

// store the original key Loop over each letter,

key_ = key; calculate the row and
column numbers and then

// Append the alphabet

PP P store both the letter and a

// Make sure the key is upper case std::pair of the coordinates
in a map. You will need two

// Remove non-alpha characters maps stored as members of

// Change J —> I the class - one to go from
letter — coord and another

// Remove duplicated letters to go from coord — letter

// Store the coords of each letter

// Store the playfair cihper key map

}

32

Exercise 7 - Playfair Cipher Implementation

* You can now complete the Playfair Cipher by implementing the encrypt
function

* You are free to do this how you wish but try to use what you've learned

!
today! Can't really be done with

. - : algorithms - Use a loop,
There are some hints below: check if current char is the

same as previous char. If so,
std::string PlayfairCipher::applyCipher(\ store X+current char
const std::string& inputText, \
const CipherMode cipherMode) const

{
// Change J - I
// If repeated chars in a digraph add an X or Q if XX Can be done by using +=20N

the iterator/loop counter
// if the size of input is odd, add :M athor thanjUSt ++

// Loop over the input in Digraphs

// - Find the coords in the grid for each digraph
// - Apply the rules to these coords to get 'new' coords Use ﬁnd on the approp”ate map to QEt
, , _ the coords. Then from that calculate the
// - Find the letter associated with the new coords new DOSitiOﬂ coords using the rules and
// return the text use the other map to get back to the
return input;
} en/decrypted letter

/3

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

