

1

Playfair Cipher

Mark Slater

2

● We will spend the afternoon going through the steps to implement
another cipher for your library – the Playfair Cipher

● This is another plain text cipher that has similar restrictions as the
Caesar Cipher but is more complex

● After setting up the initial class stub, we will then introduce Iterators,
Algorithms and Lambdas and use these to implement the actual
cipher

Implementing the Playfair Cipher

3

● The Playfair is based around the idea of exchanging pairs of letters
based on the positions in a 5x5 grid

● The grid contains a key phrase with repeated letters removed and
then any remaining letters of the alphabet not contained added to
the end and J replaced with I

● As an example, below is the grid for the key 'Playfair Example':

The Playfair Cipher

4

● To encrypt a message, the following is applied:
➔ Any repeated characters in a pair are separated by 'X' or a 'Q' if the pair is

already 'XX'
➔ If there are an odd number of characters, a 'Z' is appended
➔ The message is then broken down into pairs of letters ('Digraphs')

● The following is an example:

Hello World → HE LX LO WO RL DZ

The Playfair Cipher

Z appended as odd
number of characters

X added between the
double 'L's of the digraph

Letters split into pairs

5

● After this preparation, the letters in a
Digraph are found on the 5x5 table
and the following rules applied:

1. If letters are on the same row,
replace with letter to the right

2. If in same column, replace with
letters directly below

3. If they form a rectangle, replace
with ones from corner on the same
row

● To decrypt, simply use the inverse of
these 3 rules

The Playfair Cipher

6

● In the repo for today, we have added an additional command line option to
request the playfair or caesar cipher (use –help to check!). To actually create one
though, we need to create a Playfair Cipher class just like the CaesarCipher

● Go through the following steps

1. Create a very basic 'PlayfairCipher' class skeleton that:
➔ Holds a std::string key that is assigned with a setKey function
➔ Has a constructor that takes a std::string key and calls the setKey function
➔ Has an applyCipher function that just prints a message at the moment

2. Create this class with the given key if specified on the cmd line. Note that the
key for the Playfair cipher is a string not an int!

3. Check that you can call the applyCipher function correctly
● Below, you can see the function definitions to be used:

Exercise 1 – Add Playfair Boiler Plate

PlayfairCipher::PlayfairCipher(const std::string& key) {...}

void PlayfairCipher::setKey(const std::string& key) {…}

std::string PlayfairCipher::applyCipher(const std::string& inputText, const CipherMode cipherMode) const

7

● Though the cipher is significantly more complicated than the Caesar
Cipher, we can break down everything in to several easier steps

● Copy the following comments into your 'setKey' and 'applyCipher'
functions as placeholders for the actual code:

Exercise 2 – Implementation Steps

void PlayfairCipher::setKey(\
 const std::string& key)
{
 // store the original key
 key_ = key;

 // Append the alphabet

 // Make sure the key is upper case

 // Remove non-alpha characters

 // Change J -> I

 // Remove duplicated letters

 // Store the coords of each letter

 // Store the playfair cihper key map
}

std::string PlayfairCipher::applyCipher(\
 const std::string& inputText, \
 const CipherMode cipherMode) const
{
 // Change J → I

 // If repeated chars in a digraph add an X or Q if XX

 // if the size of input is odd, add a trailing Z

 // Loop over the input in Digraphs

 // - Find the coords in the grid for each digraph

 // - Apply the rules to these coords to get 'new' coords

// - Find the letter associated with the new coords

 // return the text
 return input;
}

8

Iterators, Algorithms, Lambdas, Maps

Mark Slater

9

1. Iterators

10

● There are several different STL containers apart from string and
vector

● However, some containers can't be accessed by an incremental index
variable which means you can't just have an index number to loop
over the elements (e.g. map) so you need a more general method

● Iterators give a powerful and more generic mechanism for accessing
containers. They:

➔ Point to an element of a container
➔ Know how to move from one element to the next
➔ Can be 'dereferenced' to access the element it points to

● Each STL container class provides at least one iterator type as well as
special functions that return iterators for the first and last elements
in a container

Iterators

11

#include <vector>

int main()
{
 // initialise a vector
 std::vector<int> vec = {1, 2, 3, 4, 5};

 // create an iterator
 std::vector<int>::iterator iter1{ vec.begin() };

 // Use iterators to loop - range based loops use this behind the scenes
 for (auto iter2 { std::begin(vec) }; iter2 != vec.end(); ++iter2)
 {
 // dereference to get the element
 std::cout << *iter2 << std::endl;
 }

 // Can also add/subtract from iterators
 auto iter3 { std::begin(vec) + 1 };

}

Iterators Example

This is an iterator type specifically for
the integer vector class – you can't

have interchangeable iterators

The 'begin()' method of
std::vector returns an
iterator that points to
the beginning of the

container

Can also use 'auto' which
will become a lot more

useful when dealing with
these long named types!

Use the '*' operator to
dereference the iterator

and obtain the element it
points to

The 'end()' method of std::vector
returns an iterator that points to
ONE PAST the last element of the

container

12

● As we have said, it's always best to keep variables const unless you
definitely need to change it

● Iterators are a bit different because you usually need to change the
iterator (inc/decrement it) but you will want to keep the thing it
points to constant. This is where const_iterators are used.

Const Iterators

#include <vector>

int main()
{
 // create a vector
 std::vector<int> vec = {1, 2, 3, 4, 5};

 // create a const_iterator to point to it
 std::vector<int>::const_iterator iter;
 iter = vec.cbegin();

 // This is OK
 iter++;

 // This isn't
 *iter = 10;
}

Use the 'cbegin' and 'cend'
methods for const versions of
the 'begin' and 'end' iterators

13

● You can create iterators from any objects that satisfy the
requirements of an iterator and can then be used in the algorithms,
etc. we'll see later

● This first of these we'll briefly touch on is a ostream iterator
● This can output things to the given stream (with optional delimiter)

by assignment:

Iterators of Other Objects

#include <iostream>
#include <vector>
#include <iterator>

int main()
{
 // create an iterator based on std::cout
 std::ostream_iterator<int> cout_iter{std::cout, "\n"};

 // output something
 cout_iter = 5;
}

Note that you have to
say what type you're

streaming to and from

Assign to the iterator to
actually perform the

input/ouput

14

● The second iterator we'll look at specifically is an insertion iterator –
back_insert_iterator

● This will add elements (equivalent to doing push_back in this case) to
the given vector on assignment

● There are many others so do look at the documentation!

Iterators of Other Objects

#include <iostream>
#include <vector>
#include <iterator>

int main()
{
 // create an iterator to insert elements
 std::vector<int> vec;
 std::back_insert_iterator< std::vector<int> > iter1{vec};
 auto iter2 { std::back_inserter(vec) };

 // add an element
 iter2 = 5;
}

Create an iterator
that will push_back
to the given vector

Assign to the iterator to
add the element

15

2. Algorithms

16

● At the moment, Iterators probably seem rather over-engineered for
just looping over elements of a container

● Where they really show their power is when used in Algorithms
● These are generic programming tasks that use iterators to operate on

containers.
● There are many algorithms available, some of which are:

➔ copy, copy_if: Copy elements from one range to another
➔ find, find_if, find_if_not: Find an element in a range
➔ generate: Save the result of a function into a range
➔ max_element: returns the max element in the range

● For a full list, see:

http://en.cppreference.com/w/cpp/algorithm

Algorithms

17

● In this example, we use an algorithm to fill a vector with the reverse
of another vector, i.e. the first element becomes the last, etc.

● This would normally involve a 'for' loop with some non-trivial logic
within it but with the algorithm is reduced to one line!

Algorithms – reverse_copy Example

#include <vector>
#include <algorithm>

int main()
{
 // create a vector
 std::vector<int> vec = {1, 2, 3, 4, 5};

 // create one to take the reverse
 // Note: need to create and then resize!
 std::vector<int> rev;
 rev.resize(vec.size());

 // fill it - rev will now contain 5, 4, 3, 2, 1
 std::reverse_copy(vec.begin(), vec.end(), rev.begin());

 // or use a back_inserter instead
 std::vector<int> rev2;
 std::reverse_copy(vec.begin(), vec.end(), std::back_inserter(rev2));
}

The reverse vector must
be the same size as the

range use to fill it

Specify the ranges to be used
using iterators – begin() and

end() in this case

Can also use a
back_inserter to fill

an empty vector

18

● For this example, we'll use the 'sort' algorithm to sort a vector in place
● We will them use 'copy' and a std::cout iterator to output the result

Algorithms – sort and copy Example

#include <vector>
#include <algorithm>
#include <iterator>

int main()
{
 // create a vector
 std::vector<int> vec = {1, 20, 3, 40, 5, 50};

 // sort the vector in place
 std::sort(vec.begin(), vec.end());

 // create an iterator for std::cout
 std::ostream_iterator<int> cout_iter{ std::cout, "\n" };

 // output values
 std::copy(vec.begin(), vec.end(), cout_iter);
}

'copy' using the
std::cout iterator just
outputs each element

copied

19

● You may be thinking 'Why should I use algorithms? – I can just do my own
loops'

● Scott Meyers 'Effective STL' book gives three reasons for preferring
algorithms over hand written loops:

➔ Efficiency: Quite probably more efficient (Not guaranteed but likely!)
➔ Correctness: Less code written means fewer places for bugs
➔ Maintainability: Code is often clearer and more straightforward

● Scientific software can shy away from algorithms because of efficiency
concerns (or lack of knowledge about the efficiency)

● However, you should generally prefer clear and simple code until a
performance problem is found - don't prematurely optimise!

● There are times when algorithms are less efficient, but you should be sure
about this through testing and profiling before changing the code!

Algorithms – Why use them?

20

Exercise 3 – Playfair Cipher Implementation
● So we can now start doing the implementation of the Playfair Cipher using

Algorithms. We'll start with the setKey function:

void PlayfairCipher::setKey(const std::string& key)
{
 // store the original key
 key_ = key;

 // Append the alphabet

 // Make sure the key is upper case

 // Remove non-alpha characters

 // Change J -> I

 // Remove duplicated letters

 // Store the coords of each letter

 // Store the playfair cihper key map
}

Storing the key and
appending the alphabet can
be done without algorithms

Use the std::transform
algorithm with the

::toupper (NOT
std::toupper!) function to

change to upper case

21

3. Lambdas

22

● Lambdas can basically be thought of as 'inline' function definitions then can then
be passed around just like any other variable

● In other words, they allow you to define a function within a code block just as you
would any other object and pass it to a function or assign to a variable

● This can become very useful for extending algorithms or a providing a way for the
calling code to specify the precise implementation of a given programming
concept without the overhead of a 'formal' function definition

● For example, you may have an address book class that provides a generic search
algorithm but the specifics of how you search can be decided by the calling code,
e.g. by first or last name, address, etc.

● You can just give a general search function that takes a lambda (i.e. function
definition) and calls this function when performing the search

● This can then be provided either by a usual function definition or as a lambda
● Lambdas have one major advantage over traditional functions as well – they can

access variables that were defined in the scope of the calling code

What are Lambdas?

23

● So how does that help us with our algorithm use?
● At present, the algorithms we've seen are good for their specific

purpose but probably seem a bit limited
● You are either restricted to using already available functions or

writing a standalone function away from where it is needed just for a
one line use

● This is where Lambdas can be used: Instead of having to define a
function well away from the calling scope that is probably only
relevant for that scope, it can be put 'inline'

● Plus, as just mentioned, you can provide different functions that can
manipulate locally defined variables

Generalising Algorithms

24

● Lambdas are defined using the '[]' syntax followed by a normal
function definition

Lambda Syntax and Declaration

int main()
{
 // use the generate algorithm with a lambda to
 // fill a vector with 7s
 std::vector<int> vec{};
 vec.resize(10);
 std::generate(vec.begin(), vec.end(), [] () { return 7; });

 // create a vector
 std::vector<int> vec = {1, 20, 3, 40, 5, 50};

 // create an iterator for std::cout
 std::ostream_iterator<int> cout_iter{ std::cout, "\n" };

 // output values greater than 10
 auto func = [] (int val) {
 if (val > 9)
 return true;
 else
 return false;
 };
 std::copy_if(vec.begin(), vec.end(), cout_iter, func);
}

As the return value can be
determined by the compiler
in this case, you don't have

to give it explicitly

Create and store a
lambda function that
checks if a the given

value is greater than 9

Create a lambda function
that returns the number to
store and pass this as the

function that 'generate' calls

copy_if requires a
function that takes the
same argument type as

that held by the
container

25

void PlayfairCipher::setKey(const std::string& key)
{
 // store the original key
 key_ = key;

 // Append the alphabet

 // Make sure the key is upper case

 // Remove non-alpha characters

 // Change J -> I

 // Remove duplicated letters

 // Store the coords of each letter

 // Store the playfair cihper key map
}

Exercise 4 – Playfair Cipher Implementation
● Now we can use lambdas, we'll return to the Playfair Cipher and do the next

bit of implementation!

You can now use a lambda
along with the 'transform'
algorithm to perform this

Use the std::remove_if algorithm
with a lambda that simply returns

the opposite of isalpha. NOTE:
this doesn't actually remove

anything! It reorders the
container with the objects to be

kept at the beginning. It the
returns an iterator that can be

used with 'erase'

std::string str1 = "Text with some spaces";
// reorder string and return iter to start of chars to erase
auto iter = std::remove(str1.begin(), str1.end(), ' ')
// actually erase
str1.erase(iter,str1.end());

26

● What makes lambdas even more powerful is the idea of variable capture
● This means that you can use local variables in the lambda function, something

you couldn't do with a normal function declared outside the scope
● To do this, you simply add an option between the brackets to indicate what

capture you want to do:
➔ [] - Don't capture anything
➔ [&] - Capture any referenced variable by reference
➔ [=] - Capture any referenced variable by value (i.e. make a copy)
➔ [foo, &bar] – Capture 'foo' by value and 'bar' by reference
➔ [this] – Capture the 'this' pointer of the enclosing class

● This gives you a lot of power for using locally declared variables in algorithms and
outside the calling code

● Be careful with capturing by reference and storing the lambda – the captured
variables would be destroyed on leaving the scope and any further calls to the
lambda would fail

Variable Capture

27

Variable Capture Example

#include <vector>

int main()
{
 // create a vector
 std::vector<int> vec = {1, 2, 3, 4, 5};
 int i{0}, j{10};

 // capture by reference - you get 7, 14, 21...
 std::generate(vec.begin(), vec.end(), [&] () { i+=7; return i; });

 // capture by value and reference
 std::generate(vec.begin(), vec.end(), [i,&j] () { j+=7; return i*j; });

 // capture by value - this will fail as 'i' is read-only
 std::generate(vec.begin(), vec.end(), [=] () { i+=7; return i; });
}

28

void PlayfairCipher::setKey(const std::string& key)
{
 // store the original key
 key_ = key;

 // Append the alphabet

 // Make sure the key is upper case

 // Remove non-alpha characters

 // Change J -> I

 // Remove duplicated letters

 // Store the coords of each letter

 // Store the playfair cihper key map
}

Exercise 5 – Playfair Cipher Implementation
● We can now continue on to the next part of the Playfair Cipher

This will be another use of
string.erase and remove_if as you
did with the non-alpha characters.

However, this time you'll need a
lambda function that checks

against a stored string containing
all the encountered letters so far
(string.find is useful here). This is
where variable capture is needed –

declare the encountered letters
string BEFORE the function and

then use it in the lambda function
so the same encountered

characters are added to the same
string each iteration

29

4. Maps and Pairs

30

● Up until now, we've only dealt with sequence containers like std::string and
std::vector but there are also Associative Containers like std::map

● Each value stored is also associated with a key which allows fast retrieval of
elements based on that key

● These key-value combinations in maps are grouped together using the std::pair
type from which you can access the 'first' or 'second' elements of the pair

● These 'pairs' can also be useful in other situations, not just with std::maps
● As with vectors, elements can be added and iterators used to cycle through the

them though in this case, the iterators point to std::pairs
● They work in a very similar way to dictionaries in python
● Note that when dealing with maps, it can become very useful to use 'using .. = ..'

or typedefs – this will create new 'labels' for types to save typing

Maps and Pairs

31

Map and Pair Example

#include <map>
#include <iostream>

int main()
{
 // Create a new label for the type – could also use 'typedef'
 using Str2IntMap = std::map<std::string, int>;

 // create an instance of this map
 Str2IntMap mymap;

 // create a pair and insert it using either pair or value_type
 std::pair< std::string, int > p0{ "A", 1 };
 auto p1 { std::make_pair("B", 2) };
 Str2IntMap::value_type p2{ "C", 3 };
 mymap.insert(p0);
 mymap.insert(p1);
 mymap.insert(p2);

 // Use the subscript notation instead
 mymap["C"] = 3;

 // Find elements in the map
 auto iter = mymap.find("A");
 std::cout << (*iter).first << ": " << (*iter).second << std::endl;

 // Use range based for loop to print the map
 for (auto p : mymap)
 {
 std::cout << p.first << ": " << p.second << std::endl;
 }
}

'find' returns an iterator
that points to the

appropriate std::pair – note
you should (almost) always
check it's not equal to the

end of the container!

Use auto to
avoid long type

names

32

void PlayfairCipher::setKey(const std::string& key)
{
 // store the original key
 key_ = key;

 // Append the alphabet

 // Make sure the key is upper case

 // Remove non-alpha characters

 // Change J -> I

 // Remove duplicated letters

 // Store the coords of each letter

 // Store the playfair cihper key map
}

Exercise 6 – Playfair Cipher Implementation
● We can now tackle the last part of the setKey function in the Playfair

Cipher

Loop over each letter,
calculate the row and

column numbers and then
store both the letter and a
std::pair of the coordinates
in a map. You will need two
maps stored as members of
the class – one to go from

letter → coord and another
to go from coord → letter

33

Exercise 7 – Playfair Cipher Implementation
● You can now complete the Playfair Cipher by implementing the encrypt

function
● You are free to do this how you wish but try to use what you've learned

today!
● There are some hints below:

std::string PlayfairCipher::applyCipher(\
 const std::string& inputText, \
 const CipherMode cipherMode) const
{
 // Change J → I

 // If repeated chars in a digraph add an X or Q if XX

 // if the size of input is odd, add a trailing Z

 // Loop over the input in Digraphs

 // - Find the coords in the grid for each digraph

 // - Apply the rules to these coords to get 'new' coords

// - Find the letter associated with the new coords

 // return the text
 return input;
}

Can't really be done with
algorithms – Use a loop,

check if current char is the
same as previous char. If so,

store X+current char

Can be done by using += 2 on
the iterator/loop counter

rather than just ++

Use 'find' on the appropriate map to get
the coords. Then from that calculate the
new position coords using the rules and

use the other map to get back to the
en/decrypted letter

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

