Unit Testing mpags-cipher with Catch and CMake

* Mark Slater (based on slides from Ben Morgan)

THE UNIVERSITY OF UNIVERSITYOF

WA]QN/IC K BIRMINGHAM

Developer
Workflow

/\Build and Test

|4 . .
: : $ cmake ../mpags-cipher.git && make
git add/commit § Jmpags-cipher

“Add CMake
build” /)

Edit Sources
Add Files

Why Test At All?

* “I'm a scientist, show me a plot, I'll
know if it s right or not”

* How do you know?

* The code changed, then the plot
changed - is it still right?

* Again, how do you know?

* If you know, then by definition there’s
a metric to measure “rightness’, and
thus something an (unbiased)
computer can measure!

SCIENTIFIC PUBLISHING

A Scientist’s Nightmare: Softwar
Problem Leads to Five Retraction

Untilrecently, Geoffrey Chang’s career wason 2001 Science paper, which described th
a trajectory most young scientists only dream ture of a protein called MsbA, 1solated
about. In 1999, at the age of 28, the protein bacterium Escherichia coli. MsbA belc
crystallographer landed a faculty position at huge and ancient family of molecules
the prestigious Scripps Research Institute in ~ energy from adenosine triphosphate t
San Diego, California. The next year, ina cer- port molecules across cell membrane:
emony at the White House, Chang received a so-called ABC transporters perforr

Presidential Early Career Award
for Scientists and Engineers, the
country’s highest honor for young
researchers. His lab generated a
stream of high-profile papers
detailing the molecular structures
of important proteins embedded in
cell membranes.

Then the dream turned into a
nightmare. In September, Swiss
researchers published a paper in
Nature that cast serious doubt on a
protein structure Chang’s group
had described in a 2001 Science
paper. When he investigated,
Chang was horrified to discover
that a homemade data-analysis pro-
gram had flipped two columns of
data, inverting the electron-density
map from which his team had
derived the final protein structure.
Unfortunately, his group had used

Flipping fiasco. The structures of MsbA (purple) and Sa
little (left) until MsbA is inverted (right).

Unit Testing

* We now have several “units” in mpags-cipher: command line parsing, input preprocessing and
the Caesar Cipher.

* Unit Testing simply means writing a small program that exercises a given “unit” by providing a
series of known inputs and checking the outputs are as required for that input. The tests pass,
i.e. the program runs successfully, if the outputs are as required.

* Whilst we can write these programs ourselves, it's more usual to use a Unit Testing Framework
that provides functions and objects specialised for this task. This allows us to concentrate on
the contents of the tests.

* Another reason is to ensure the tests themselves are correct!

B
e
{l

O This repository Searct

philsquared / Catch

Catch.hpp

* We've chosen the Catch unit testing SelLieercsiss) Cetch /docs fiutorial.m
framework for this course purely for
simplicity

._.' philsquared Merge pull request #380 from socantre

8 contributors -_l &-m -ﬁq L - n

258 lines (175 sloc) 12.3 KB

* Others include gtest, Boost,
CPPUnit

Getting Catch

* It comes as a single header which _ _
The simplest way to get Catch is to downlk

we V.e SUpplIIEd for you under the by the word "builds" there. The single heac
Testing subdirectory of mpags-cipher normal source code in a header file.

The full source for Catch, including test prc

* See its GitHub page for further info e e e

dd tati
AN forumeEntation Where to put it?

Catch is header only. All yvou need to do is
central location you can set your header s«
aoad antion for other Onen-Source oraiech

defenseindustrydaily.com 0

0O (< £

| B

-

i,
I

DEFENSE
INDUSTRY
DAILY

Defense program acquisition news, budget data, market briefings

Contact ~ Subscribe ~ Login - | : EI

F-22 Squadron Shot Down by the S i .
International Date Line

Mar 01, 2007 05:35 UTC by Defense Industry Daily staff » Alrcraft

Aircraft software can be serious business. DID's F-22A Raptor FOCUS » Electronics & IT
Article mentioned recent flight software problems that delayed the aircraft’'s

+ Land Equipment
first foreign deployment & from Hickam AFB in Hawaii to Kadena AFB, e

F-22; back taHickam... [EAUCE » Logistics & Support
folick to wiew full)

What we didn't mention at the time is how serious the problem was, and how » Military Overall

dependent on computers modern aircraft = including military aircraft = have become. What follows are
relevant excerpts from a CNN transcript on February 24, 2007 & that covered a number of unrelated » Naval Equipment

issues. We've cut that out, and left only the F-22 related section of the transcript...
+ Ordnance & Guns

Maj. Gen. Don Sheppard

(ret.): ".. At the international EnBpacs

date line, whoops, all r WMD

systems dumped and when I

L L L e say all systems, I mean all
folick to srdew full)

systems, their navigation,

part of their communications, their fuel systems. They

were — they could have been in real trouble. They

Even with testing bugs still happen...

Unit Testing Regressions

Tests can also help us to fix bugs and to quickly spot if they reoccur.

Imagine a user of your software reports a problem - the ciphertext they are getting is not as
expected when they encrypt “helloworld”

To help identify and resolve the issue, you write a test that reproduces the bug to provide a
starting point. Other tests may be written as you diagnose and resolve the bug.

This “bug test” is kept and run as part of testing in the future in case further changes cause it to
reappear (i.e. cause a regression)

Testing Resources

Naturally a huge topic and not C++
specific.

* A good and compact starting point is
the Kent Beck book on the right

* Though the examples are in Java, the
process and ideas are applicable to C+
+ and other languages

* The Addison-Wesley Signature Series
provides many other useful titles on
testing topics

TEST-DRIVEN
DEVELOPMENT

<8 BE
A
«

https://www.pearsonhighered.com/educator/series/AddisonWesley-Signature-Series/10031.page

Walkthrough: Testing mpags-cipher with Catch
and CMake

* In the following walkthrough, we'll prepare mpags-cipher for unit testing and write the first
few tests for it.

* We'll start by splitting the build of mpags-cipher into a library of functions that is linked to the
actual mpags-cipher executable. This will allow us to test the functions easily without multiple
recompilations.

* With the library in place, we ll use CMake and its CTest system to add a very basic test
program. We'll see how building and running the test integrates with our workflow

* Finally, we'll use Catch to write our first true unit test and see how to build and run it under
CMake/CTest.

Table Of Contents

Command-Line Tools
Interactive Dialogs
Reference Manuals
Release Notes

Index and Search

Next topic
cmake(1)

This Page

Command-Line Tools

« cmake(1)
« ctest(1)
e cpack(1)

Interactive Dialogs

o cmake-gui(1)

Show Source + ccmake(1)

Quick search

Reference Manuals

cmake-buildsystem(7)
cmake-commands(7)
cmake-compile-features(7)
cmake-developer(7)
cmake-generator-expressions(7)
cmake-generators(7)
cmake-language(7)
cmake-modules(7)
cmake-packages(7)
cmake-policies(7)
cmake-properties(7)
cmake-gt(7)
cmake-toolchains(7)
cmake-variables(7)

Enter search terms or a module,
class or function name.

® & & & & & & & 8 8 8 4 8 8

| a o0

O This repository

philsquared / Catch

Pull requests

Catch / docs / tutorial.md

Branch: master -

-‘l philsquared Merge pull request #380 from socantre/master

B contributors l Q.& ﬁq ng

25@ lines (175 sloc)} | 13.3 KB

Getting Catch

Tools you'll need

Issues

Gist

& Watch ~

Raw

&
TR &
208 % Unstar 2,391 ¥ Fork 329
<

ab5clct on May 20

Blame History [» 10

ACMake

— —

h| SyntaxHighlight.hpp + (~) - VIM

| #ifndef SYNTAX_HIGHLIGHTING_EDITOR
2 #define SYNTAX_HIGHLIGHTING_EDITOR

4 class SyntaxHighlightingEditor {
5 public:
enum YourEditor {VIM, EMACS, KATE, GENIE};

void learn_features() const;
9 void be_productive() const;
10 };
11 #endif

byntaxHighlight. hpp[+]1Lcpp]

How to Test mpags-cipher?

Though we have units we'd like to testin mpags-cipher, they are all compiled into a
monolithic executable, so we can't test them independently and in isolation.

We could build our test programs like we do for mpags-cipher, creating an executable
composed of the test code plus the unit of code, e.g. TransformChar.cpp, we want to test.

However, the unit may use other units, so we'd need to compile those and know that we need
to, plus we'd be be recompiling the same code for each executable it is used in.

Instead, we're going to bundle the units into a ready compiled block of binary code that many
executables can reuse - a Library.

11

Libraries in C++

[_ j TransformChar.cpp]
mpags-cipher.cpp

CommandLine.cdp J

* Have already seen how an executable

is compiled and linked from multiple |

sources. Compile Compile
* AlLibrary is just an intermediate, but [e j TransformChar.o j

persistent, step that bundles compiled

CommandLine.c J
object files into a special file - the

library itself. Link

. _ [lIbMPAGSCipher.a]
* ALibrary can be linked to an

executable (and even other libraries) Link ‘
just as object files are.

[mpags-cipher.exe j

12

Advantages

* We can have as many executables as
we want linking to the library - as
needed for testing!

* Each executable uses the same library
code, so the code only needs to be
compiled once rather than individually
every executable.

* Apart from timesaving, this also
reduces the potential for errors caused
by compile differences

libMPAGSCipher.a

Link

testCommand.exe

testCaesar.exe]

]

(

[testinput.exe j

[mpags-cipher.exe j

13

o @ @ « mpags-cipher.

Using a Library

* No real difference to compiling all the
code together:

* We #include headers from the library
declaring the interfaces we want to
use

* Use of interfaces is identical

* However, must link our executable to
the library to ensure it can use the
binary implementation of the
interfaces we've used.

mpags-cipher.cpp[cpp]

1: Project Structure for Libraries

The project structure may now becoming a bit clearer - the code that implements the actual functionality of
mpags-cipher is provided as a series of headers/sources under MPAGSCipher/. We'll use CMake to compile
this code into a library and link it to the mpags-cipher program.

Whilst we've only used a single CMake script, we'll now see how to split up the build into a top level script plus one
for building the library

EPSCO2PN49MFVH8 :mpags-cipher.git slatermw$ tree -C .

|\ cuokeLists. txt Notes

— LICENSE

F— CMakelists.txt
— CaesarCipher.cpp

— C Cipher.h
— CipherMode.hpp Again, this choice of structure is

— ProcessCommandLine.cpp

— ProcessCommandLine.hpp al’bitl’ary, bUt iS da common

— TransformChar. '
— TransfornChar hpp pattern used by projects.

README .md

L— catch.hpp
L— mpags-cipher.cpp

2 directories, 13 files
EPSCO2PN49MFVH8 :mpags-cipher.git slatermw$

2: Addin% MPAGSCipher/ To The Build

We can add a subdirectory to a CMake build by using the add_subdirectory command. It takes the path to the
directory holding a further CMakeL.ists.txt script to be processed as its argument. If the path is relative, it is taken
to be relative to the directory holding the CMakeLists.txt in which add_subdirectory was called.

Use add_subdirectory to add the MPAGSCipher/ directory to the build. To confirm it works, try using the
CMake message command in MPAGSCipher/CMakelLists.txt

(CMAKE_CXX_EXTENSIONS OFF)

Notes

(CMAKE_CXX_FLAGS "-Wall -Wextra -Werror -Wfatal-errors -Wshadow -pedantic")

(MPAGSCipher)
We only have a single level of
(mpags-cipher

mpags-cipher. cpp subdirectories, but more can be
MPAGSCipher/TransformChar.hpp . .
MPAGSCipher/TransformChar . cpp used if reqUH'Ed.
MPAGSCipher/ProcessCommandLine.cpp

MPAGSCipher/ProcessCommandLine. hpp

MPAGSCipher/CaesarCipher.cpp

MPAGSCipher/CaesarCipher.hpp

)

(mpags-cipher
PRIVATE MPAGSCipher
D)

(mpags-cipher
PRIVATE cxx_auto_type cxx_range_for cxx_uniform_initialization

)

-uu-:---F1 (Makelists.txt Bot L41 (CMake)
Mark set

3: Building The MPAGSCipher Library

To build a library in CMake, we use its add_library command. This takes the name you want the library to have,
the type of library it should be and a space separated list of all the sources that need to be compiled to create the
library.

In MPAGSCipher/CMakelLists.txt, use add_library to build a library named MPAGSCipher. Use the
STATIC library type and list the sources that should be compiled to create the library. Take care to specify the
correct paths to the sources.

Library Types

(MPAGSCipher STATIC
CaesarCipher.hpp
CaesarCipher.cpp

ProcessCommandLine. hpp
ProcessCommandLine. cpp

TransformChar . hpp There are two main types on

o eer library - static and shared. The
difference between these is that
static libraries have to be built
and linked into the executable
whereas shared libraries are
‘referenced’ and are shipped as
separate files. There are pros and
cons to both depending on the
situation but here, we will stick

with the simpler static library.

-uuu:---F1 (MakeLists.txt All L11 (CMake)
Wrote /Users/slatermw/mpags/mpags-cipher.git/MPAGSCipher/CMakelLists.txt

4: Adding Compile Features and Include Paths

Just as we did for the mpags-cipher executable, use target_compile_features and
target_include_directories to declare needed C++ features and header search paths for MPAGSCipher. Both
executables and libraries are “targets” in CMake parlance so we can use exactly the same command. This time,
declare the features and paths using the PUBLIC scope specifier. We do this because we will have mpags-
cipher as a client of the library, so it needs to know about these

Hints

(MPAGSCipher STATIC
CaesarCipher.hpp
CaesarCipher.cpp
ProcessCommandLine.hpp
ProcessCommandLine.cpp
TransformChar. hpp The path passed to

TransformChar. cpp

) target_include_directories
(MPAGSCipher can use the CMake convenience

PUBLIC ${CMAKE_CURRENT_LIST_DIR}

) variable
(MPAGSCipher

PUBLIC cxx_auto_type cxx_range_for cxx_uniform_initialization CMAKE_CU RRENT_UST_

) DIR. This has a value equal to
the absolute path to the
directory holding the CMake
script currently being processed.

-uuu:**-F1 C(MakelLists.txt All L18 (CMake)

5: What CMake Has Built

After adding compile features and include directories, try rebuilding and you should see it complete without error

(if not, resolve any errors until it does).

The output of our add_library call is a static library - a file named libMPAGSCipher.a which is located under
the MPAGSCipher subdirectory of the build directory. CMake outputs build products in the same directory

structure as used in the source project.

/MPAGSCipher -Wall -Wextra -Werror -Wfatal-errors -Wshadow -pedantic -std=c++11 -o (MakeFiles
/MPAGSCipher.dir/CaesarCipher.cpp.o -c /Users/slatermw/mpags/mpags-cipher.git/MPAGSCipher/Caesar
Cipher.cpp
[77%]
cd /Users/slatermw/mpags/mpags-cipher.build/MPAGSCipher && /Applications/Xcode.app/Contents/Deve
loper/Toolchains/XcodeDefault.xctoolchain/usr/bin/c++ -I/Users/slatermw/mpags/mpags-cipher.git
/MPAGSCipher -Wall -Wextra -Werror -Wfatal-errors -Wshadow -pedantic -std=c++11 -0 (MakeFiles
/MPAGSCipher.dir/ProcessCommandLine.cpp.o -¢ /Users/slatermw/mpags/mpags-cipher.git/MPAGSCipher/
ProcessCommandLine.cpp
[88%]
cd /Users/slatermw/mpags/mpags-cipher.build/MPAGSCipher && /Applications/Xcode.app/Contents/Deve
loper/Toolchains/XcodeDefault.xctoolchain/usr/bin/c++ -I/Users/slatermw/mpags/mpags-cipher.git
/MPAGSCipher -Wall -Wextra -Werror -Wfatal-errors -Wshadow -pedantic -std=c++11 -0 (MakeFiles
/MPAGSCipher.dir/TransformChar.cpp.o -c /Users/slatermw/mpags/mpags-cipher.git/MPAGSCipher/Trans
formChar. cpp
[100%]
cd /Users/slatermw/mpags/mpags-cipher.build/MPAGSCipher && /usr/local/Cellar/cmake/3.9.4_1/bin/c
make -P CMakeFiles/MPAGSCipher.dir/cmake_clean_target.cmake
cd /Users/slatermw/mpags/mpags-cipher.build/MPAGSCipher && /usr/local/Cellar/cmake/3.9.4_1/bin/c
make -E cmake_link_script (MakeFiles/MPAGSCipher.dir/link.txt --verbose=1
/Applications/Xcode.app/Contents/Developer/Toolchains/XcodeDefault.xctoolchain/usr/bin/ar qc 1lib
MPAGSCipher.a (MakeFiles/MPAGSCipher.dir/CaesarCipher.cpp.o CMakeFiles/MPAGSCipher.dir/ProcessC
ommandLine.cpp.o CMakeFiles/MPAGSCipher.dir/TransformChar.cpp.o
/Applications/Xcode.app/Contents/Developer/Toolchains/XcodeDefault.xctoolchain/usr/bin/ranlib 11
bMPAGSCipher.a
[100%] Built target MPAGSCipher
/usr/local/Cellar/cmake/3.9.4_1/bin/cmake -E cmake_progress_start /Users/slatermw/mpags/mpags-ci
pher.build/CMakeFiles @
EPSCO2PN49MFVH8 : mpags-cipher.build slatermw$ 1s MPAGSCipher/

Makefile cmake_install.cmake 1ibMPAGSCipher.a
EPSCO2PN49MFVH8 :mpags-cipher.build slatermw$

Library Names

The UNIX convention is to name
libraries ibNAME.EXT. NAME
is as you might guess, EXT is ‘a
for static libraries, but ‘so’ for
shared libraries, except on OS X
where ‘dylib’ is used.

On Windows, NAME.EXT is
used, with EXT being “dll’ for
shared libraries, and "lib’ for
static/import libraries.

6: Using The MPAGSCipher Library

As things stand, we're still compiling all sources under MPAGSCipher twice - once for the mpags-cipher executable
and once for the MPAGSCipher library. With the latter now built, we can remove its sources from the
add_executable call for mpags-cipher and instead link mpags-cipher to the MPAGSCipher library.

In CMake, we link a target to libraries using the target_link_libraries command, and we'll see how to use this
next

(CMAKE_CXX_FLAGS "-Wall -Wextra -Werror -Wfatal-errors -Wshadow -pedantic") NOtes

(MPAGSCipher)

(mpags-cipher There are occasional use cases
mpags-cipher.cpp .
MPAGSCi pher./TransformChar . hpp where you may need to compile

MPAGSCipher/TransformChar. cpp .
MPAGSCipher/ProcessCommandLine.cpp the same flle mnore than once.

MPAGSCipher/ProcessCommandLine. hpp
MPAGSCipher/CaesarCipher.cpp
MPAGSCipher/CaesarCipher.hpp

) CMake will handle this as we
PRIVATE MPAGSCipher (PagsTcipher have seen, but in general the use
) cases are quite advanced.

(mpags-cipher
PRIVATE cxx_auto_type cxx_range_for cxx_uniform_initialization

)

-uu-:%%-F1 CMakelLists.txt~ Bot L30 (CMake)

/: Using target_link_libraries

The target_link_libraries command takes the name of the target requiring linking, a link scope specifier and a list
of targets to be linked to it.

In your top level CMakeL.ists.txt, build mpags-cipher from mpags-cipher.cpp only. Replace the calls to

target_compile_features and target_include_directories with a call to target_link_libraries that links the
mpags-cipher executable to the MPAGSCipher library using the PRIVATE scope specifier.

Notes

(VERSION 3.2)
(MPAGSCipher VERSION 0.1.0)

Why remove

target_compile_features

and

(CMAKE_CXX_EXTENSIONS OFF) targ et_include_directories?
See the next slide!

We've used the PRIVATE
(MPAGSCipher) scope specifier here as mpags-
cipher is the end point of the
e e Eoncscipher build process. We don't link
anything to it. so nothing needs

-uu-:---F1 (Makelists.txt All L23 (CMake) to knOW that It uses
Wrote /Users/slatermw/mpags/mpags-cipher.git/CMakelists.txt MPAGSCIpher

(CMAKE_VERBOSE_MAKEFILE ON)

(CMAKE_CXX_FLAGS "-Wall -Wextra -Werror -Wfatal-errors -Wshadow -pedantic")

8: Rebuilding mpags-cipher
After you've edited your CMake script for mpags-cipher, rebuild and note what happens.

You should find that compilation of mpags-cipher.cpp has all the correct flags, including -std=c++11 and the
include path. By specifying the compile features and include paths of MPAGSCipher as PUBLIC scope, we can
simply link to it and CMake will take care of setting required compile features and include paths for us! You'll also
see that the ibMPAGSCipher.a file is added to the linking step as expected.

/Applications/Xcode.app/Contents/Developer/usr/bin/make -f MPAGSCipher/CMakeFiles/MPAGSCipher.di

r/build.make MPAGSCipher/(MakeFiles/MPAGSCipher.dir/depend N t

cd /Users/slatermw/mpags/mpags-cipher.build && /usr/local/Cellar/cmake/3.9.4_1/bin/cmake -E cmak O es

e_depends "Unix Makefiles" /Users/slatermw/mpags/mpags-cipher.git /Users/slatermw/mpags/mpags-ci

pher.git/MPAGSCipher /Users/slatermw/mpags/mpags-cipher.build /Users/slatermw/mpags/mpags-cipher

.build/MPAGSCipher /Users/slatermw/mpags/mpags-cipher.build/MPAGSCipher/CMakeFiles/MPAGSCipher.d

ir/DependInfo.cmake --color=

/Applications/Xcode.app/Contents/Developer/usr/bin/make -f MPAGSCipher/CMakeFiles/MPAGSCipher.di .
r/build.make MPAGSCipher/CMakeFiles/MPAGSCipher.dir/build We could add extra complle
make[2]: Nothing to be done for “MPAGSCipher/CMakeFiles/MPAGSCipher.dir/build’. .

[66%] Built target MPAGSCipher features and include paths to
/Applications/Xcode.app/Contents/Developer/usr/bin/make -f CMakeFiles/mpags-cipher.dir/build.mak . .

e CMakeFiles/mpags-cipher.dir/depend mpags-cipher if we need them.
cd /Users/slatermw/mpags/mpags-cipher.build && /usr/local/Cellar/cmake/3.9.4_1/bin/cmake -E cmak . .

e_depends "Unix Makefiles" /Users/slatermw/mpags/mpags-cipher.git /Users/slatermw/mpags/mpags-ci CMake Wlll Slmply merge them
pher.git /Users/slatermw/mpags/mpags-cipher.build /Users/slatermw/mpags/mpags-cipher.build /User . .
s/slatermw/mpags/mpags-cipher.build/CMakeFiles/mpags-cipher.dir/DependInfo.cmake --color= Wlth those Of any target llnked.

/Applications/Xcode.app/Contents/Developer/usr/bin/make -f CMakeFiles/mpags-cipher.dir/build.mak

e (MakeFiles/mpags-cipher.dir/build

[83%] . :
Jusr/local/Cellar/cmake/3.9.4_1/bin/cmake -E cmake_link_script CMakeFiles/mpags-cipher.dir/link. The l|brary is treated by the
txt --verbose=1 : : . :
/Applications/Xcode.app/Contents/Developer/Toolchains/XcodeDefault.xctoolchain/usr/bin/c++ -Wal llnker IUSt llke any Other ObIECt
1 -Wextra -Werror -Wfatal-errors -Wshadow -pedantic -Wl,-search_paths_first -Wl,-headerpad_max_i : . .

nstall_names (MakeFiles/mpags-cipher.dir/mpags-cipher.cpp.o -0 mpags-cipher MPAGSCipher/1ibMPA flle, SO It IS 5|mPlY added asan
GSCipher.a . . .
/usr/local/Cellar/cmake/3.9.4_1/bin/cmake -E cmake_progress_start /Users/slatermw/mpags/mpags-ci

pher.build/CMakeFiles @

EPSCO2PN49MFVH8 :mpags-cipher.build slatermw$

9: Library Build Summary

In this first part, we've partitioned the build of mpags-cipher into an executable linked to a library, the latter
holding the major part of the implementation such as functions.

We've done this so we can use that implementation in several places, in this case we can now link that library to
other executables that'll test units of that implementation.

Use of a build system like CMake has made that partition easy.

F— 1link.txt

— mpags-cipher.cpp.o N t
L— progress.make O es

I
I
I
L— progress.marks

CMakeDirectoryInformation.cmake

y] "
— CXX. includecache If you don't have a working build
— CaesarCipher.cpp.o . . .
— DependInfo. cmake at this point, check with us!
F— ProcessCommandlLine.cpp.o
F— TransformChar.cpp.o
— build.make
F— cmake_clean.cmake
F— cmake_clean_target.cmake
— depend.internal
— depend.make
— flags.make
F— link.txt
L— progress.make
L— progress.marks
— Makefile
— cmake_install.cmake
L— 1ibMPAGSCipher.a
— Makefile

— cmake_install.cmake
| I

I
I
I
I
I_
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

12 directories, 54 files
EPSCO2PN49MFVH8 :mpags-cipher.build slatermw$

10: Project Structure for Testing

There are no hard and fast rules for where to store unit test code in a project. For clarity, it's usually best to store
the files in a subdirectory of the main project, and we'll do this in mpags-cipher with the Testing subdirectory.
As mentioned, this directory is already present in the root of the mpags-cipher source tree. Within this, create a
blank CMakeLists.txt file.

EPSCO2PN49MFVH8 :mpags-cipher.git slatermw$ tree -C .

— CMakelists.txt
— CMakelists.txt~
— LICENSE

F— CMakelists.txt

— CaesarCipher.cpp

F— CaesarCipher.hpp

F— CipherMode.hpp

F— ProcessCommandLine.cpp
F— ProcessCommandLine.hpp
F— TransformChar.cpp

L— TransformChar.hpp
README .md

F— C(Makelists.txt
L— catch.hpp
L— mpags-cipher.cpp

2 directories, 15 files
EPSCO2PN49MFVH8 :mpags-cipher.git slatermw$

Notes

This structure is usually followed
in other languages such as
Python.

There’s nothing to stop test code
being alongside the code it's
testing. It can cause a little
confusion over what is
implementation and what is test
though, plus naming clashes
might occur.

11: Enabling Testing in CMake

CMake provides a basic structure for adding and running test programs as part of the generated build system using
its ctest program (you can find this alongside the cmake program).

To use this functionality, add a call to the enable_testing() command in your top level CMake script. Following
this, we also need to make CMake aware of the Testing subdirectory, so also recurse the build into this using
add_subdirectory as we did for the MPAGSCipher directory.

(CMAKE_CXX_FLAGS "-Wall -Wextra -Werror -Wfatal-errors -Wshadow -pedantic") NOtes

(MPAGSCipher)

® The call to enable_testing()
(Testing) .
must be made in the top level
CMake script of the project, no
(mpags-cipher mpags-cipher.cpp)
(mpags-cipher PRIVATE MPAGSCipher) matter where the tests actually
(mpags-cipher ale.

PRIVATE cxx_auto_type cxx_range_for cxx_uniform_initialization

)

-uu-:**-F1 (MakelLists.txt Bot L27 (CMake)

12: Running Tests

Even though we don't have any tests implemented yet, we can check that everything’s set up correctly and see how
they'll be run.

Move back to your build directory and re-run cmake and/or make as needed. You should see that a new file
CTestTestfile.cmake has been created, and a new Make target test is available. Try “building” this with make
test and not much happens as we don't have any tests yet, but this is how we'll run the tests when we have them

| EPSCO2PN49MFVHS8 : mpags-cipher.build slatermw$ 1s
CMakeCache . txt CTestTestfile.cmake Makefile cmake_install.cmake N OtES

| EPSCO2PN49MFVHS8 : mpags-cipher.build slatermw$ make test

| Running tests...

/usr/local/Cellar/cmake/3.9.4_1/bin/ctest --force-new-ctest-process
| Test project /Users/slatermw/mpags/mpags-cipher.build

|No tests were found!!!

| EPSCO2PNAOMFVHS :mpags-cipher.build slatermus A similar test target will also be
created in IDEs like Xcode.

This target simply runs the ctest
program, and you can see this by
running ctest directly in your
build directory. To get verbose
output, run ctest -V

13: Adding a New Test Program

To define a test in CMake, we first use add_executable to build the test program, then add_test to declare a
new test using this program as the command to run.

To start, write testHello.cpp in Testing with the basic “hello world” in C++. Use add_executable in
Testing/CMakeLists.txt to build a testHello program from it, then use add_test to make it the command of a
test named test-hello

#include <iostream>

ot Notes

std::cout << "Hello World!" << std::endl;
¥

This extremely simple use of
add_testis all we'll need in this
course.

-uuu:**-F1 testHello.cpp All L5 (C++/1 Abbrev)

More advanced usage is enabled

Y SR e s LA via test properties. These include
things like maximum runtime
and dependencies between tests
(e.g. one generates a file used by
another).

-uu-:**-F1 (MakelLists.txt All L5 (CMake)

14: Building and Running the Test Program

Test executables are built as part of the main build task, so simply rerun this (make in this case) to rebuild - of
course the executable should compile!

The tests are run either by “building” the test target, i.e. make test, or by running the ctest command directly.
Try both and note the differences. Try running ctest -V to get more detailed reporting.

EPSCO2PN49MFVH8 :mpags-cipher.build slatermw$ make test

Running tests... N t
/usr/local/Cellar/cmake/3.9.4_1/bin/ctest --force-new-ctest-process O es
Test project /Users/slatermw/mpags/mpags-cipher.build

Start 1: test-hello
1/1 Test #1: test-hello Passed 0.00 sec

100% tests passed, @ tests failed out of 1 .
Note that make test will not
Total Test time (real) = 0.01 sec

EPSCO2PN4OMFVHS :mpags—cipher.build slatermw$ ctest rebuild the test executables if
Test project /Users/slatermw/mpags/mpags-cipher.build

Start 1: test-hello they ChangE!
1/1 Test #1: test-hello Passed 0.00 sec

100% tests passed, @ tests failed out of 1
Total Test time (real) = ©.00 sec Generally, make test is best for

EPSCO2PN49MFVH8 :mpags-cipher.build slatermw$ qUiCk checks as you dEVElOp. Use
of ctest is best when you need
more detailed output or to run
individual tests to debug.

15: A First Catch-based Test Program

Open a file named testCatch.cpp in Testing/ and add two lines

#define CATCH_CONFIG_MAIN is a simple preprocessor define to tell Catch to provide a main() function
for us. This simplifies writing tests and will also provide several command line options for the resulting executable
(just like those we've been writing for mpags-cipher)

#include "catch.hpp" of course just includes the single Catch header

#define CATCH_CONFIG_MAIN N t
#include "catch.hpp" O es

This provision of a main()
function by the testing
framework is quite common.

It helps to focus on the task of
writing tests, and allows the
executable to be provisioned
with extra functionality, like
command line arguments.

-uuu:**-F1 testCatch.cpp All L3 (C++/1 Abbrev)

16: Building the Catch-based Test Program

Compile the testCatch.cpp file into a program named testCatch, using add_executable to build it, and
target_include_directories to ensure the Testing/ subdirectory is used to find the Catch.hpp header.

Use add_test to create a test named test-catch that runs the testCatch program.
Rerun make in the build directory, and check that it compiles correctly.

Notes

(testHello testHello.cpp)
(NAME test-hello COMMAND testHello)

(testCatch testCatch.cpp) ’ . .
(testCatch PRIVATE ${CMAKE_CURRENT_LIST_DIR}) Don't WOFI’y If y0U flnd

(NAME test-catch COMMAND testCatch) compilation Of your Catch
program taking a while. The
header is large and complex, so
this is the small price we pay for
ease of use!

-uu-:**-F1 (MakeLists.txt All L9 (CMake)

17: Running the Catch-based Test Program

As we did for the “hello world” test, once you have testCatch building correctly, try running it using make test
and ctest -VV.

Just like other programs, the actual executable is output to the build directory under Testing/testCatch. You can
also run this directly, so try this, passing it the --help command line flag. This, and the other listed arguments, are
supplied because we got Catch to create main().

EPSCO2PN4OMFVHS :mpags-cipher.build slatermw$ Testing/testCatch --help N Otes

Catch v1.5.8
usage:
testCatch [<test name, pattern or tags> ...] [options]

where options are: If you want to pass arguments to
-h, --hel displ inf ti -
--list-iezts 1:25 g{lgzggﬁhlzgogzgtlgzses add_teSt; these can be llSted

--list-tags list all/matching tags :
--s:cces(s;lg i:\cluge sugces;fgl ggsts in output after the Command |tS€lf, e-g-

--break break into debugger on failure
--nothrow skip exception tests
--invisibles show invisibles (tabs, newlines)

--out <filename> output filename add teSt(teSt-CatCh

--reporter <name> reporter to use (defaults to console)

--name <name> suite name
--abort abort at first failure COMMAND

--abortx <no. failures> abort after x failures

--warn <warning name> enable warnings teStcatCh -S)
--durations <yesl|no> show test durations

--input-file <filename> 1load test names to run from a file

--filenames-as-tags adds a tag for the filename

--list-test-names-only list all/matching test cases names only .
--list-reporters list all reporters tO run teStcatCh W|th the
--order <decll|lexl|rand> test case order (defaults to decl)

--rng-seed <'time'l|number> set a specific seed for random numbers argument tO OUtpUt paSSing and

--force-colour force colourised output (deprecated) f l
--use-colour <yes|no> should output be colourised alting tests

18: Test Cases and Assertions

As the “No tests ran” report of testCatch indicates, we haven't implemented any tests yet.

We'll add tests using Catch's TEST_CASE and REQUIRE macros - preprocessor “templates” that are
expanded at compile time. In this case, we don't need to worry about this too much and can write and treat them

as functions returning void (i.e. nothing)

TEST_CASE organises tests, whilst REQUIRE does the actual test - we supply it with a boolean expression

that should evaluate to true if the test passes

o

G

& GitHub, Inc.

Writing tests

Let's start with a really simple example. Say you have written a function to calculate factorials and now you want to test
it (let's leave aside TDD for now).

unsigned int Factorial(unsigned int number) {
return number <= 1 ? number : Factorial(number-1)=xnumber;

I
To keep things simple we'll put everything in a single file (see later for more on how to structure your test files)

#define CATCH_CONFIG_MAIN // This tells Catch to provide a main() - only do this in one cpp file
#include "“catch.hpp"

unsigned int Factorial(unsigned int number) {
return number <= 1 ? number : Factorial(number-1)=snumber;

}

TEST_CASE("Factorials are computed", "[factoriall") {
REQUIRE(Factorial(1l))i
REQUIRE(Factorial(2) };
REQUIRE(Factorial(3))a
REQUIRE(Factorial(1@) == 3628800);
}

o k=

This will compile to a complete executable which responds to command line argurments. If you just run it with no
arguments it will execute all test cases (in this case there is just one), report any failures, report a summary of how many
tests passed and failed and return the number of failed tests (useful for if you just want a yes/ no answer to: "did it

wirrke "

Macros vs Functions

Test and other frameworks use

macros when the user needs to
supply a long but well-defined

block of code in which only one
or two names (strings, digits,

typenames) may need to be
changed.

However, macro expansions can
be very difficult to debug, so
functions should be preferred if
possible!

19: Implementing Test Cases
To see how TEST_CASE and REQUIRE work, add the code as shown below to your testCatch.cpp file.

The arguments to TEST_CASE are strings describing the test and “tags” that may be used to group tests (we
won't cover these, see the Catch docs for further info).

Inside TEST_CASE, we add a boolean expression inside a REQUIRE call that asserts that the result of 1+1 is 2
(which should be true!!)

#define CATCH_CONFIG_MAIN
#include "catch.hpp" NOtes

("Addition works", "[math]") {
REQUIREC 1 + 1 == 2);
}

Catch provides several other
assertion macros. These can be
used for more advanced checks
such as comparison of floating
point numbers (not as easy as
you may think!) and exception
throwing.

See the reference docs:

https://github.com/philsquared
/Catch/blob/master/docs/asser

“uu-:**-F1 testCatch.cpp ALl L10 (C++/1 Abbrev) tions.md
End of buffer

20: Running Test Cases

Save your testCatch.cpp file, rebuild using make, then run make test (note that you must run make first as
make test will only run the test program, not rebuild it).

The test should pass, and we can get more detailed info by running ctest -VV. Here, Catch tells us about how
many test cases and assertions have been run. You can also try running the testCatch program directly with the ‘-
s’ argument (or use this as an argument to testCatch in add_test) to see how REQUIRE was evaluated.

EPSCO2PN49MFVH8 :mpags-cipher.build slatermw$ ctest -VV

UpdateCTestConfiguration from :/Users/slatermw/mpags/mpags-cipher.build/DartConfiguration.tcl r\l -t
UpdateCTestConfiguration from :/Users/slatermw/mpags/mpags-cipher.build/DartConfiguration.tcl O es

Test project /Users/slatermw/mpags/mpags-cipher.build

Constructing a list of tests

Done constructing a list of tests

Updating test list for fixtures

Added @ tests to meet fixture requirements .

Checking test dependency graph... Generally we just want to run
Checking test dependency graph end

test 1 everything a single test
Start 1: test-hello
executable does. However, we
1: Test command: /Users/slatermw/mpags/mpags-cipher.build/Testing/testHello

1+ Test timeout computed to be: 9.99988e+06 could create one add_test for
1: Hello World!

1/2 Test #1: test-hello Passed 0.00 sec eaCh test case. The teStCatCh
test 2

Start 2: test-catch command would be run every

: Test command: /Users/slatermw/mpags/mpags-cipher.build/Testing/testCatch tlme, bUt Wlth an argument to
: Test timeout computed to be: 9.99988e+06

i select the test case. Catch's

2
2
2:
2: All tests passed (1 assertion in 1 test case) " -

2 tags’ to test cases could also be
2

used here.

/2 Test #2: test-catch Passed 0.00 sec
100% tests passed, @ tests failed out of 2

Total Test time (real) = 0.01 sec
EPSCO2PN49MFVH8 :mpags-cipher.build slatermw$

21: Failing Tests

To see what happens when tests fail, add an extra TEST_CASE for subtraction to testCatch.cpp, and add a
REQUIRE using an expression you know will fail (e.g. 1-1==1)

The testCatch program will still compile, but when you run make test, you should see a failure reported. Run
ctest -VV to get detailed output, and you'll see Catch has told us which tests failed, and exactly which bit of code
caused the failure.

: Test timeout computed to be: 9.99988e+06

.
.
.
i ~ ~ ~ ~ ~ ~

: testCatch is a Catch v1.5.8 host application.
: Run with -? for options

This output from Catch should
give you everything you need to

/Users/slatermw/mpags/mpags-cipher.git/Testing/testCatch.cpp:10: FAILED: start lOOking for the prOblem in
: REQUIREC 1 -1 ==2)
: with expansion: the COde.

0==

 ost cases: 21 1 possed | 1 fuiled As noted earlier, we'll generally

run make test with every rebuild,
and then use ctest -VVV when
we have failing tests to get this
extra information.

2
2
2
2
2:
2:
2.
2
2
2
2

}2 Test #2: test-catch ***Failed 0.01 sec
50% tests passed, 1 tests failed out of 2

Total Test time (real) = 0.01 sec

The following tests FAILED:

2 - test-catch (Failed)

Errors while running CTest
EPSCO2PN49MFVH8 :mpags-cipher.build slatermw$

22: Testing MPAGSCipher with Catch

Before starting to write unit tests for MPAGSCipher, it's worth spending a little time thinking about how to structure
them and what to test. The “unit” in unit testing means that ideally we should have one test program per interface
(i.e. header file). In that program, test cases can be organised by task or area - for ciphers we might have one test
case for encryption, one for decryption. For what to test, we can use our requirements as a starting point and
sketch these in as failing tests. We then work through implementing them, from simplest to most complex

#define CATCH_CONFIG_MAIN N t
#include "catch.hpp" O es
#include "TransformChar.hpp"

("Ch t d", "[alph ic]") { 1 HH !
REQUIRECFalseys oo oo HATPRAnATETte Why write failing tests? It's a

} note to ourselves that we need a
("Digit t 1it ted", "[alph ic]™) { - 1 =
REQUIRECFal cays - onetireratedt, Tlatphanumeric test here, so it failing is a good
! marker of “needs fixing”. This
("s ial ch t d", "[tuation]") {
REQUIRE(FC‘?zZ;? characters dare remove pUI’IC udation also means We can concentrate
} on one test at a time.

This is a slightly less upfront
version of Test Driven
Development - writing tests first
and then writing the

-uuu:**-F1 testTransformChar.cpp All L14 (C++/1 Abbrev) functionality afterwards to make
the tests pass

23: Writing MPAGSCipher Tests

To use, and hence test, MPAGSCipher functions/objects with Catch, we simply #include the relevant header after
setting up Catch.

The functions/objects can then be used in test cases and assertions just as they were in other code.

#define CATCH_CONFIG_MAIN N t
#include "catch.hpp" O es

#include "TransformChar.hpp"

("Characters are uppercased", "[alphanumeric]") {
std:: upper{"ABCDEFGHIJKLMNOPQRSTUVWXYZ"}, ..
std:: lower{"abcdefghijklmnopgrstuvwxyz"}; If y0U nEEd add|t|0nal headerS,

C i =0; i< upper.size(); i++) e.g. for C++ Standard Library, to
{ .. .
REQUIRE(transformChar(lower[i]) == std::string{upper[il}); assist Iin the testlng, these can
} :
} also be included.

("Digits are transliterated", "[alphanumeric]") {
REQUIRE(C transformChar('0') = 'ZERO);
REQUIRE(transformChar('l’ "ONE s
REQUIRE(transformChar('2 "TWO");
REQUIRE(transformChar('3 "THREE");
REQUIRE(transformChar('4 "FOUR");
REQUIRE(transformChar('5' "FIVE");
REQUIRE(transformChar('6 "SIX"),
REQUIRE(C transformChar('7
REQUIRE(transformChar('8
REQUIRE(transformChar('9

"SEVEN");
"EIGHT");
"NINE");

NN N \J
nunmwomnmnnnn
nmwmwmwnnnnnu

-uuu:**-F1 testTransformChar.cpp Top L28 (C++/1 Abbrev)

24: Building MPAGSCipher Tests

To build the testing program, we build it in CMake just as we did for the basic testCatch program, but in this case
we also need to use target_link_libraries to link it to the MPAGSCipher library.

Try building and running your basic MPAGSCipher test program (start with one to begin with) ensuring it can use
the relevant MPAGSCipher header and is linked correctly to the static library

Notes

(testHello testHello.cpp)
(NAME test-hello COMMAND testHello)

(testCatch testCatch.cpp)
(testCatch PRIVATE ${CMAKE_CURRENT_LIST_DIR}) Now we see the advantage Of

(NAME test-catch COMMAND testCatch) . .
using the library. In the example
(testTransformChar testTransformChar.cpp) on the lEft, WlthOUt the libral’y,

(testTransformChar, PRIVATE ${CMAKE_CURRENT_LIST_DIR}) -
(testTransformChar MPAGSCipher) we would have had to compile

(NAME test-transformchar COMMAND testTransformChar) .
transformChar.cpp again for
the test program.

We'll see how to reduce the
amount of CMake commands in
an upcoming slide

-uu-:**-F1 (MakeLists.txt All L14 (CMake)

25: Simplifying use of Catch.hpp

As further test programs are added, target_include_directories will need to be set for each one so that
Catch.hpp is found. We can simplify this through a CMake construct known as an “interface library”. This is a
“library” with no compiled sources (i.e. has headers only, like Catch or the Eigen Linear Algebra library) but which
can have properties like include directories. Users of the library simply “link” to it using target_link_libraries to
pick up, here, include directories just like they would when linking to a binary library like MPAGSCipher.

Try This

(testHello testHello.cpp)
(NAME test-hello COMMAND testHello)

(Catch INTERFACE) Use

(Catch INTERFACE ${CMAKE_CURRENT_LIST_DIR})

(testCatch testCatch.cpp) Ei(j(j Iit)riir)/((:iitfzr]
(testCatch Catch) —
(NAME test-catch COMMAND testCatch) INTERFACE)

(testTransformChar testTransformChar.cpp)

(NAME test-transfornchar COMMAND testTransfornChar) and set its include directories
using the INTERFACE scope
so that your test executables can
just link to it to pick up
Catch.hpp correctly.

-uu-:---F1 (MakelLists.txt All L1 (CMake)
Loading /usr/local/share/cmake/editors/emacs/cmake-mode.el (source)

26: Adding Further Test Cases and Tests

We've covered the basics of writing tests using Catch, building them with CMake and running with CTest.

Review these and your code and think about other test cases and tests the functions and now classes might need. If
you identify one, implement the test and see what happens!

EPSCO2PN49MFVH8 :mpags-cipher.git slatermw$ tree -C Testing/

Notes

— CMakelists.txt

F— catch.hpp

— testCaesarCipher.cpp
F— testCatch.cpp

— testHello.cpp

 testTranstornChar-cpp Generally, it's easiest to have one

0 directories, 7 files test executable per unit of

EPSCO2PN49MFVH8 :mpags-cipher.git slatermw$ functionality (eg one test
executable for each header).
Each executable can have as
many test cases as needed.

27: Walkthrough Summary

We've partitioned the build of mpags-cipher into a main program linked to a static implementation library. This has
enabled both a simplification of the CMake scripts and set up the implementation to be tested easily by creating
test executables that link to the library.

Unit testing has been introduced using the simple Catch framework. We've seen how test programs can be
implemented using Catch, built with CMake and run using CTest. Test outputs have been reviewed to see how
success and failure cases are reported.

EPSCO2PN49MFVH8 :mpags-cipher.build slatermw$ make test

Eﬂzgqgcz%%:iic-nr'/cmake/B.9.4_1/bin/ctest --force-new-ctest-process Fu rther Read I ng

Test project /Users/slatermw/mpags/mpags-cipher.build
Start 1: test-hello

1/3 Test #1: test-hello Passed 0.00 sec
Start 2: test-catch

2/3 Test #2: test-catch Passed 0.00 sec
Start 3: test-transformchar
3/3 Test #3: test-transformchar Passed 0.00 sec AL .

100% tests passed, @ tests failed out of 3

Total Test time (real) = 0.01 sec

EPSCO2PN49MFVHS8 :mpags-cipher.build slatermw$ CMake DOCU meﬂtatiOﬂ

Catch Documentation

Writing tests

Homework: Adding Tests for MPAGSCipher Classes

* As you work through your code, determine suitable unit tests for the functionality of each part.

* Implement these tests using Catch, TEST_CASE and REQUIRE as needed. Also look at
Catch's SECTION macro as this could help with the Caesar Cipher testing:

— https://github.com/philsquared/Catch/blob/master/docs/tutorial. md#test-cases-and-
sections

* Build the tests with CMake and ensure they compile and then pass without failure.

42

	Slide 1
	Slide 2
	Why Test At All?
	Unit Testing
	Catch.hpp
	Slide 6
	Unit Testing Regressions
	Testing Resources
	Walkthrough: Testing mpags-cipher with Catch and CMake
	Slide 10
	How to Test mpags-cipher?
	Libraries in C++
	Advantages
	Using a Library
	1: Project Structure for Libraries
	2: Adding MPAGSCipher/ To The Build
	3: Building The MPAGSCipher Library
	5: Adding Compile Features and Include Paths
	6: What CMake Has Built
	7: Using The MPAGSCipher Library
	8: Using target_link_libraries
	9: Rebuilding mpags-cipher
	10: Library Build Summary
	11: Project Structure for Testing
	12: Enabling Testing in CMake
	13: Running Tests
	14: Adding a New Test Program
	15: Building and Running the Test Program
	16: A First Catch-based Test Program
	17: Building the Catch-based Test Program
	18: Running the Catch-based Test Program
	19: Test Cases and Assertions
	20: Implementing Test Cases
	21: Running Test Cases
	22: Failing Tests
	23: Testing MPAGSCipher with Catch
	24: Writing MPAGSCipher Tests
	25: Building MPAGSCipher Tests
	26: Simplifying use of Catch.hpp
	27: Adding Further Test Cases and Tests
	28: Walkthrough Summary
	Homework: Adding Tests for MPAGSCipher Classes

