
1

Unit Testing mpags-cipher with Catch and CMake

• Mark Slater (based on slides from Ben Morgan)

2

Edit Sources
Add Files

git add/commit
“Add CMake

build”

Build and Test
$ cmake ../mpags-cipher.git && make
$./mpags-cipher

Developer
Workflow

3

Why Test At All?
• “I’m a scientist, show me a plot, I’ll

know if it’s right or not”

• How do you know?

• The code changed, then the plot
changed - is it still right?

• Again, how do you know?

• If you know, then by definition there’s
a metric to measure “rightness”, and
thus something an (unbiased)
computer can measure!

4

Unit Testing
• We now have several “units” in mpags-cipher: command line parsing, input preprocessing and

the Caesar Cipher.

• Unit Testing simply means writing a small program that exercises a given “unit” by providing a
series of known inputs and checking the outputs are as required for that input. The tests pass,
i.e. the program runs successfully, if the outputs are as required.

• Whilst we can write these programs ourselves, it’s more usual to use a Unit Testing Framework
that provides functions and objects specialised for this task. This allows us to concentrate on
the contents of the tests.

• Another reason is to ensure the tests themselves are correct!

5

Catch.hpp
• We’ve chosen the Catch unit testing

framework for this course purely for
simplicity

• Others include gtest, Boost,
CPPUnit

• It comes as a single header which
we’ve supplied for you under the
Testing subdirectory of mpags-cipher

• See its GitHub page for further info
and documentation

6

Even with testing bugs still happen…

7

Unit Testing Regressions
• Tests can also help us to fix bugs and to quickly spot if they reoccur.

• Imagine a user of your software reports a problem - the ciphertext they are getting is not as
expected when they encrypt “helloworld”

• To help identify and resolve the issue, you write a test that reproduces the bug to provide a
starting point. Other tests may be written as you diagnose and resolve the bug.

• This “bug test” is kept and run as part of testing in the future in case further changes cause it to
reappear (i.e. cause a regression)

8

Testing Resources
• Naturally a huge topic and not C++

specific.

• A good and compact starting point is
the Kent Beck book on the right

• Though the examples are in Java, the
process and ideas are applicable to C+
+ and other languages

• The Addison-Wesley Signature Series
provides many other useful titles on
testing topics

https://www.pearsonhighered.com/educator/series/AddisonWesley-Signature-Series/10031.page

9

• In the following walkthrough, we’ll prepare mpags-cipher for unit testing and write the first
few tests for it.

• We’ll start by splitting the build of mpags-cipher into a library of functions that is linked to the
actual mpags-cipher executable. This will allow us to test the functions easily without multiple
recompilations.

• With the library in place, we’ll use CMake and its CTest system to add a very basic test
program. We’ll see how building and running the test integrates with our workflow

• Finally, we’ll use Catch to write our first true unit test and see how to build and run it under
CMake/CTest.

Walkthrough: Testing mpags-cipher with Catch
and CMake

Tools you’ll need

11

How to Test mpags-cipher?
• Though we have units we’d like to test in mpags-cipher, they are all compiled into a

monolithic executable, so we can’t test them independently and in isolation.

• We could build our test programs like we do for mpags-cipher, creating an executable
composed of the test code plus the unit of code, e.g. TransformChar.cpp, we want to test.

• However, the unit may use other units, so we’d need to compile those and know that we need
to, plus we’d be be recompiling the same code for each executable it is used in.

• Instead, we’re going to bundle the units into a ready compiled block of binary code that many
executables can reuse - a Library.

12

CommandLine.o

CommandLine.cpp

Libraries in C++
• Have already seen how an executable

is compiled and linked from multiple
sources.

• A Library is just an intermediate, but
persistent, step that bundles compiled
object files into a special file - the
library itself.

• A Library can be linked to an
executable (and even other libraries)
just as object files are.

mpags-cipher.cpp
TransformChar.cpp

mpags-cipher.o TransformChar.o

mpags-cipher.exe

Compile Compile

Link

libMPAGSCipher.a

Link

13

Advantages
• We can have as many executables as

we want linking to the library - as
needed for testing!

• Each executable uses the same library
code, so the code only needs to be
compiled once rather than individually
every executable.

• Apart from timesaving, this also
reduces the potential for errors caused
by compile differences

libMPAGSCipher.a

mpags-cipher.exe

testInput.exe

testCaesar.exe

testCommand.exe
Link

14

Using a Library
• No real difference to compiling all the

code together:

• We #include headers from the library
declaring the interfaces we want to
use

• Use of interfaces is identical

• However, must link our executable to
the library to ensure it can use the
binary implementation of the
interfaces we’ve used.

15

Again, this choice of structure is
arbitrary, but is a common
pattern used by projects.

Notes

1: Project Structure for Libraries
The project structure may now becoming a bit clearer - the code that implements the actual functionality of
mpags-cipher is provided as a series of headers/sources under MPAGSCipher/. We’ll use CMake to compile
this code into a library and link it to the mpags-cipher program.
Whilst we’ve only used a single CMake script, we’ll now see how to split up the build into a top level script plus one
for building the library

16

We only have a single level of
subdirectories, but more can be
used if required.

2: Adding MPAGSCipher/ To The Build
We can add a subdirectory to a CMake build by using the add_subdirectory command. It takes the path to the
directory holding a further CMakeLists.txt script to be processed as its argument. If the path is relative, it is taken
to be relative to the directory holding the CMakeLists.txt in which add_subdirectory was called.
Use add_subdirectory to add the MPAGSCipher/ directory to the build. To confirm it works, try using the
CMake message command in MPAGSCipher/CMakeLists.txt

Notes

17

There are two main types on
library - static and shared. The
difference between these is that
static libraries have to be built
and linked into the executable
whereas shared libraries are
‘referenced’ and are shipped as
separate files. There are pros and
cons to both depending on the
situation but here, we will stick
with the simpler static library.

Library Types

3: Building The MPAGSCipher Library
To build a library in CMake, we use its add_library command. This takes the name you want the library to have,
the type of library it should be and a space separated list of all the sources that need to be compiled to create the
library.
In MPAGSCipher/CMakeLists.txt, use add_library to build a library named MPAGSCipher. Use the
STATIC library type and list the sources that should be compiled to create the library. Take care to specify the
correct paths to the sources.

18

The path passed to
target_include_directories
can use the CMake convenience
variable
CMAKE_CURRENT_LIST_
DIR. This has a value equal to
the absolute path to the
directory holding the CMake
script currently being processed.

Hints

4: Adding Compile Features and Include Paths
Just as we did for the mpags-cipher executable, use target_compile_features and
target_include_directories to declare needed C++ features and header search paths for MPAGSCipher. Both
executables and libraries are “targets” in CMake parlance so we can use exactly the same command. This time,
declare the features and paths using the PUBLIC scope specifier. We do this because we will have mpags-
cipher as a client of the library, so it needs to know about these

19

The UNIX convention is to name
libraries libNAME.EXT. NAME
is as you might guess, EXT is ‘a’
for static libraries, but ‘so’ for
shared libraries, except on OS X
where ‘dylib’ is used.

On Windows, NAME.EXT is
used, with EXT being ‘dll’ for
shared libraries, and ‘.lib’ for
static/import libraries.

Library Names

5: What CMake Has Built
After adding compile features and include directories, try rebuilding and you should see it complete without error
(if not, resolve any errors until it does).
The output of our add_library call is a static library - a file named libMPAGSCipher.a which is located under
the MPAGSCipher subdirectory of the build directory. CMake outputs build products in the same directory
structure as used in the source project.

20

There are occasional use cases
where you may need to compile
the same file more than once.

CMake will handle this as we
have seen, but in general the use
cases are quite advanced.

6: Using The MPAGSCipher Library
As things stand, we’re still compiling all sources under MPAGSCipher twice - once for the mpags-cipher executable
and once for the MPAGSCipher library. With the latter now built, we can remove its sources from the
add_executable call for mpags-cipher and instead link mpags-cipher to the MPAGSCipher library.
In CMake, we link a target to libraries using the target_link_libraries command, and we’ll see how to use this
next

Notes

21

Why remove
target_compile_features
and
target_include_directories?
See the next slide!
We’ve used the PRIVATE
scope specifier here as mpags-
cipher is the end point of the
build process. We don’t link
anything to it. so nothing needs
to know that it uses
MPAGSCipher.

7: Using target_link_libraries
The target_link_libraries command takes the name of the target requiring linking, a link scope specifier and a list
of targets to be linked to it.
In your top level CMakeLists.txt, build mpags-cipher from mpags-cipher.cpp only. Replace the calls to
target_compile_features and target_include_directories with a call to target_link_libraries that links the
mpags-cipher executable to the MPAGSCipher library using the PRIVATE scope specifier.

Notes

22

We could add extra compile
features and include paths to
mpags-cipher if we need them.
CMake will simply merge them
with those of any target linked.

The library is treated by the
linker just like any other object
file, so it is simply added as an
extra input in the link step.

8: Rebuilding mpags-cipher
After you’ve edited your CMake script for mpags-cipher, rebuild and note what happens.
You should find that compilation of mpags-cipher.cpp has all the correct flags, including -std=c++11 and the
include path. By specifying the compile features and include paths of MPAGSCipher as PUBLIC scope, we can
simply link to it and CMake will take care of setting required compile features and include paths for us! You’ll also
see that the libMPAGSCipher.a file is added to the linking step as expected.

Notes

23

If you don’t have a working build
at this point, check with us!

9: Library Build Summary
In this first part, we’ve partitioned the build of mpags-cipher into an executable linked to a library, the latter
holding the major part of the implementation such as functions.
We’ve done this so we can use that implementation in several places, in this case we can now link that library to
other executables that’ll test units of that implementation.
Use of a build system like CMake has made that partition easy.

Notes

24

This structure is usually followed
in other languages such as
Python.

There’s nothing to stop test code
being alongside the code it’s
testing. It can cause a little
confusion over what is
implementation and what is test
though, plus naming clashes
might occur.

10: Project Structure for Testing
There are no hard and fast rules for where to store unit test code in a project. For clarity, it’s usually best to store
the files in a subdirectory of the main project, and we’ll do this in mpags-cipher with the Testing subdirectory.
As mentioned, this directory is already present in the root of the mpags-cipher source tree. Within this, create a
blank CMakeLists.txt file.

Notes

25

The call to enable_testing()
must be made in the top level
CMake script of the project, no
matter where the tests actually
are.

11: Enabling Testing in CMake
CMake provides a basic structure for adding and running test programs as part of the generated build system using
its ctest program (you can find this alongside the cmake program).
To use this functionality, add a call to the enable_testing() command in your top level CMake script. Following
this, we also need to make CMake aware of the Testing subdirectory, so also recurse the build into this using
add_subdirectory as we did for the MPAGSCipher directory.

Notes

26

A similar test target will also be
created in IDEs like Xcode.

This target simply runs the ctest
program, and you can see this by
running ctest directly in your
build directory. To get verbose
output, run ctest -V

12: Running Tests
Even though we don’t have any tests implemented yet, we can check that everything’s set up correctly and see how
they’ll be run.
Move back to your build directory and re-run cmake and/or make as needed. You should see that a new file
CTestTestfile.cmake has been created, and a new Make target test is available. Try “building” this with make
test and not much happens as we don’t have any tests yet, but this is how we’ll run the tests when we have them

Notes

27

This extremely simple use of
add_test is all we’ll need in this
course.

More advanced usage is enabled
via test properties. These include
things like maximum runtime
and dependencies between tests
(e.g. one generates a file used by
another).

13: Adding a New Test Program
To define a test in CMake, we first use add_executable to build the test program, then add_test to declare a
new test using this program as the command to run.
To start, write testHello.cpp in Testing with the basic “hello world” in C++. Use add_executable in
Testing/CMakeLists.txt to build a testHello program from it, then use add_test to make it the command of a
test named test-hello

Notes

28

Note that make test will not
rebuild the test executables if
they change!

Generally, make test is best for
quick checks as you develop. Use
of ctest is best when you need
more detailed output or to run
individual tests to debug.

14: Building and Running the Test Program
Test executables are built as part of the main build task, so simply rerun this (make in this case) to rebuild - of
course the executable should compile!
The tests are run either by “building” the test target, i.e. make test, or by running the ctest command directly.
Try both and note the differences. Try running ctest -VV to get more detailed reporting.

Notes

29

This provision of a main()
function by the testing
framework is quite common.

It helps to focus on the task of
writing tests, and allows the
executable to be provisioned
with extra functionality, like
command line arguments.

15: A First Catch-based Test Program
Open a file named testCatch.cpp in Testing/ and add two lines
#define CATCH_CONFIG_MAIN is a simple preprocessor define to tell Catch to provide a main() function
for us. This simplifies writing tests and will also provide several command line options for the resulting executable
(just like those we’ve been writing for mpags-cipher)
#include "catch.hpp" of course just includes the single Catch header

Notes

30

Don’t worry if you find
compilation of your Catch
program taking a while. The
header is large and complex, so
this is the small price we pay for
ease of use!

16: Building the Catch-based Test Program
Compile the testCatch.cpp file into a program named testCatch, using add_executable to build it, and
target_include_directories to ensure the Testing/ subdirectory is used to find the Catch.hpp header.
Use add_test to create a test named test-catch that runs the testCatch program.
Rerun make in the build directory, and check that it compiles correctly.

Notes

31

If you want to pass arguments to
add_test, these can be listed
after the command itself, e.g.

add_test(test-catch
 COMMAND
 testCatch -s)

to run testCatch with the
argument to output passing and
failing tests

17: Running the Catch-based Test Program
As we did for the “hello world” test, once you have testCatch building correctly, try running it using make test
and ctest -VV.
Just like other programs, the actual executable is output to the build directory under Testing/testCatch. You can
also run this directly, so try this, passing it the --help command line flag. This, and the other listed arguments, are
supplied because we got Catch to create main().

Notes

32

Test and other frameworks use
macros when the user needs to
supply a long but well-defined
block of code in which only one
or two names (strings, digits,
typenames) may need to be
changed.

However, macro expansions can
be very difficult to debug, so
functions should be preferred if
possible!

Macros vs Functions

18: Test Cases and Assertions
As the “No tests ran” report of testCatch indicates, we haven’t implemented any tests yet.
We’ll add tests using Catch’s TEST_CASE and REQUIRE macros - preprocessor “templates” that are
expanded at compile time. In this case, we don’t need to worry about this too much and can write and treat them
as functions returning void (i.e. nothing)
TEST_CASE organises tests, whilst REQUIRE does the actual test - we supply it with a boolean expression
that should evaluate to true if the test passes

33

Catch provides several other
assertion macros. These can be
used for more advanced checks
such as comparison of floating
point numbers (not as easy as
you may think!) and exception
throwing.
See the reference docs:
https://github.com/philsquared
/Catch/blob/master/docs/asser
tions.md

19: Implementing Test Cases
To see how TEST_CASE and REQUIRE work, add the code as shown below to your testCatch.cpp file.
The arguments to TEST_CASE are strings describing the test and “tags” that may be used to group tests (we
won’t cover these, see the Catch docs for further info).
Inside TEST_CASE, we add a boolean expression inside a REQUIRE call that asserts that the result of 1+1 is 2
(which should be true!!)

Notes

34

Generally we just want to run
everything a single test
executable does. However, we
could create one add_test for
each test case. The testCatch
command would be run every
time, but with an argument to
select the test case. Catch’s
“tags” to test cases could also be
used here.

20: Running Test Cases
Save your testCatch.cpp file, rebuild using make, then run make test (note that you must run make first as
make test will only run the test program, not rebuild it).
The test should pass, and we can get more detailed info by running ctest -VV. Here, Catch tells us about how
many test cases and assertions have been run. You can also try running the testCatch program directly with the ‘-
s’ argument (or use this as an argument to testCatch in add_test) to see how REQUIRE was evaluated.

Notes

35

This output from Catch should
give you everything you need to
start looking for the problem in
the code.

As noted earlier, we’ll generally
run make test with every rebuild,
and then use ctest -VV when
we have failing tests to get this
extra information.

21: Failing Tests
To see what happens when tests fail, add an extra TEST_CASE for subtraction to testCatch.cpp, and add a
REQUIRE using an expression you know will fail (e.g. 1-1 == 1)
The testCatch program will still compile, but when you run make test, you should see a failure reported. Run
ctest -VV to get detailed output, and you’ll see Catch has told us which tests failed, and exactly which bit of code
caused the failure.

Notes

36

Why write failing tests? It’s a
note to ourselves that we need a
test here, so it failing is a good
marker of “needs fixing”. This
also means we can concentrate
on one test at a time.

This is a slightly less upfront
version of Test Driven
Development – writing tests first
and then writing the
functionality afterwards to make
the tests pass

22: Testing MPAGSCipher with Catch
Before starting to write unit tests for MPAGSCipher, it’s worth spending a little time thinking about how to structure
them and what to test. The “unit” in unit testing means that ideally we should have one test program per interface
(i.e. header file). In that program, test cases can be organised by task or area - for ciphers we might have one test
case for encryption, one for decryption. For what to test, we can use our requirements as a starting point and
sketch these in as failing tests. We then work through implementing them, from simplest to most complex

Notes

37

If you need additional headers,
e.g. for C++ Standard Library, to
assist in the testing, these can
also be included.

23: Writing MPAGSCipher Tests
To use, and hence test, MPAGSCipher functions/objects with Catch, we simply #include the relevant header after
setting up Catch.
The functions/objects can then be used in test cases and assertions just as they were in other code.

Notes

38

Now we see the advantage of
using the library. In the example
on the left, without the library,
we would have had to compile
transformChar.cpp again for
the test program.

We’ll see how to reduce the
amount of CMake commands in
an upcoming slide

24: Building MPAGSCipher Tests
To build the testing program, we build it in CMake just as we did for the basic testCatch program, but in this case
we also need to use target_link_libraries to link it to the MPAGSCipher library.
Try building and running your basic MPAGSCipher test program (start with one to begin with) ensuring it can use
the relevant MPAGSCipher header and is linked correctly to the static library

Notes

39

Use

add_library(Catch
INTERFACE)

and set its include directories
using the INTERFACE scope
so that your test executables can
just link to it to pick up
Catch.hpp correctly.

25: Simplifying use of Catch.hpp
As further test programs are added, target_include_directories will need to be set for each one so that
Catch.hpp is found. We can simplify this through a CMake construct known as an “interface library”. This is a
“library” with no compiled sources (i.e. has headers only, like Catch or the Eigen Linear Algebra library) but which
can have properties like include directories. Users of the library simply “link” to it using target_link_libraries to
pick up, here, include directories just like they would when linking to a binary library like MPAGSCipher.

Try This

40

Generally, it’s easiest to have one
test executable per unit of
functionality (e.g. one test
executable for each header).
Each executable can have as
many test cases as needed.

26: Adding Further Test Cases and Tests
We’ve covered the basics of writing tests using Catch, building them with CMake and running with CTest.
Review these and your code and think about other test cases and tests the functions and now classes might need. If
you identify one, implement the test and see what happens!

Notes

41

CMake Documentation

Further Reading

27: Walkthrough Summary
We’ve partitioned the build of mpags-cipher into a main program linked to a static implementation library. This has
enabled both a simplification of the CMake scripts and set up the implementation to be tested easily by creating
test executables that link to the library.
Unit testing has been introduced using the simple Catch framework. We’ve seen how test programs can be
implemented using Catch, built with CMake and run using CTest. Test outputs have been reviewed to see how
success and failure cases are reported.

Catch Documentation

42

Homework: Adding Tests for MPAGSCipher Classes

• As you work through your code, determine suitable unit tests for the functionality of each part.

• Implement these tests using Catch, TEST_CASE and REQUIRE as needed. Also look at
Catch’s SECTION macro as this could help with the Caesar Cipher testing:

– https://github.com/philsquared/Catch/blob/master/docs/tutorial.md#test-cases-and-
sections

• Build the tests with CMake and ensure they compile and then pass without failure.

	Slide 1
	Slide 2
	Why Test At All?
	Unit Testing
	Catch.hpp
	Slide 6
	Unit Testing Regressions
	Testing Resources
	Walkthrough: Testing mpags-cipher with Catch and CMake
	Slide 10
	How to Test mpags-cipher?
	Libraries in C++
	Advantages
	Using a Library
	1: Project Structure for Libraries
	2: Adding MPAGSCipher/ To The Build
	3: Building The MPAGSCipher Library
	5: Adding Compile Features and Include Paths
	6: What CMake Has Built
	7: Using The MPAGSCipher Library
	8: Using target_link_libraries
	9: Rebuilding mpags-cipher
	10: Library Build Summary
	11: Project Structure for Testing
	12: Enabling Testing in CMake
	13: Running Tests
	14: Adding a New Test Program
	15: Building and Running the Test Program
	16: A First Catch-based Test Program
	17: Building the Catch-based Test Program
	18: Running the Catch-based Test Program
	19: Test Cases and Assertions
	20: Implementing Test Cases
	21: Running Test Cases
	22: Failing Tests
	23: Testing MPAGSCipher with Catch
	24: Writing MPAGSCipher Tests
	25: Building MPAGSCipher Tests
	26: Simplifying use of Catch.hpp
	27: Adding Further Test Cases and Tests
	28: Walkthrough Summary
	Homework: Adding Tests for MPAGSCipher Classes

