(++ Data Structures

Tom Latham
(based on material from Matt Williams)

THE UNIVERSITY OF

WARWICK



Data structures

- Until now, if we wanted to return multiple values from a
function, the only option was via reference arguments

* This gets unwieldy and difficult to maintain

* [t makes sense to bundle related things together into
one object



The problem

» [f we want to clone a person, we have to pass all the
input information and get all the outputs by reference.

vold clone_taller(const std::string& a_name, const float a_height,
std: :string& b_name, float& b_height)
{

b_name = a_name + "'s taller clone”;
b_height = a_height + 0.1;

int main()

std: :string clone_name;

int clone_height;

clone_taller("Dave", 1.74, clone_name, clone_height);

std: :cout << clone_name << " " << clone_height << std::endl;




Person

* In that example a person is defined by their name and
height

- Adding more attributes will make the function signature
longer and longer

 Imagine that later we might want to modify the code so
that a person is defined by their name, height, age, etc.

 We want to be able to bundle all that information into a
single object, in C++ this is a structure



A data structure: strud

A structure is created using the struct keyword, followed by a unigue name
» Together, these define a new type

» The new type can be used like any other, e.g. to create instances, to specify
function arguments, etc.

// Define a new structure called "Person"
struct Person {
std: :string name; ///< Name of person
int age; ///< Age 1n years
double height; ///< Height 1n metres
¥

« A struct contains a list of data members
» Listed with their types and names

* |t is enclosed in curly brackets and ended with a semi-colon



A data structure: strud

* |[n the example below, a struct is declared and used to make an object

- Members are accessed with the dot operator (just like you have been
doing with std::vector and std::string to see if they are empty(), to get

their size(), etc.)

struct Person {
std: :string name; ///< Name of person

int age; ///< Age 1n years
double height; ///< Height in metres
¥

1nt main()

{
Person dave {"Dave", 24, 1.74}; //Set 1in order declared

std: :cout << dave.name << std::endl;
dave.age = 25; //It's his birthday!
std: :cout << dave.age << std::endl;

} 6




Passing structs

» We can simplify our previous "cloning” example using
the new Person structure

Person clone_taller(const Person& a){
Person b {a};

p.height += 0.1;

b.name = a.name + "'s taller clone”;
return b;

¥

1int main()

{

Person dave {"Dave", 24, 1.74}; //Initialised 1in order declared

Person clone {clone_taller(dave)};
std::cout << clone.name << " " << clone.height << std::endl;

¥




Exercise: command-line information struc

- Create a new type, called ProgramSettings, thatis a struct that
holds all the command-line information

- This should be declared in the same header (.hpp) file as the
processCommandL1ne function declaration

» Edit the processCommandL1ne function

» Use your new type as a reference argument to replace many of the
current ones (it should be the second of only two arguments)

- Simply set the values of its data members instead of setting the
values of the individual objects that you had before

- Edit the main function accordingly



