
C++ Data Structures

Tom Latham
(based on material from Matt Williams)

1



Data structures

• Until now, if we wanted to return multiple values from a 
function, the only option was via reference arguments

• This gets unwieldy and difficult to maintain

• It makes sense to bundle related things together into 
one object

2



The problem

• If we want to clone a person, we have to pass all the 
input information and get all the outputs by reference.

void clone_taller(const std::string& a_name, const float a_height,
std::string& b_name, float& b_height)

{
b_name = a_name + "'s taller clone";
b_height = a_height + 0.1;

}

int main()
{

std::string clone_name;
int clone_height;
clone_taller("Dave", 1.74, clone_name, clone_height);
std::cout << clone_name << " " << clone_height << std::endl;

}

3



Person

• In that example a person is defined by their name and 
height

• Adding more attributes will make the function signature 
longer and longer

• Imagine that later we might want to modify the code so 
that a person is defined by their name, height, age, etc.

• We want to be able to bundle all that information into a 
single object, in C++ this is a structure

4



A data structure: struct
• A structure is created using the struct keyword, followed by a unique name

• Together, these define a new type

• The new type can be used like any other, e.g. to create instances, to specify 
function arguments, etc.

• A struct contains a list of data members

• Listed with their types and names

• It is enclosed in curly brackets and ended with a semi-colon

// Define a new structure called "Person"
struct Person {

std::string name; ///< Name of person
int age; ///< Age in years
double height; ///< Height in metres

};

5



A data structure: struct
• In the example below, a struct is declared and used to make an object

• Members are accessed with the dot operator (just like you have been 
doing with std::vector and std::string to see if they are empty(), to get 
their size(), etc.)
struct Person {

std::string name; ///< Name of person
int age; ///< Age in years
double height; ///< Height in metres

};

int main()
{

Person dave {"Dave", 24, 1.74}; //Set in order declared
std::cout << dave.name << std::endl;
dave.age = 25; //It's his birthday!
std::cout << dave.age << std::endl;

} 6



Passing structs

• We can simplify our previous "cloning" example using 
the new Person structure

Person clone_taller(const Person& a){
Person b {a};
b.height += 0.1;
b.name = a.name + "'s taller clone";
return b;

}

int main()
{
Person dave {"Dave", 24, 1.74}; //Initialised in order declared
Person clone {clone_taller(dave)};
std::cout << clone.name << " " << clone.height << std::endl;

}
7



Exercise: command-line information struct
• Create a new type, called ProgramSettings, that is a struct that 

holds all the command-line information

• This should be declared in the same header (.hpp) file as the 
processCommandLine function declaration

• Edit the processCommandLine function

• Use your new type as a reference argument to replace many of the 
current ones (it should be the second of only two arguments)

• Simply set the values of its data members instead of setting the 
values of the individual objects that you had before

• Edit the main function accordingly
8


