
C++ Classes

Tom Latham
(based on material from Matt Williams & Ben Morgan)

1

Introduction
• We've seen that a struct can be used to bundle data

together into a single object

• However, as well being able to store state, it would be even
more useful if objects can do things

• We therefore need something that can both:
• Organise data
• Present services using this data to the user

• We're going to use the idea of an Employee at a company as
our illustrative case

2

Object instances
• As you might have guessed, the 'thing' we need is an Object, or more precisely, an

Object Instance

• What is an Object Instance?
• “A self contained meaningful software agent”

• An instance provides a well defined, related set of services

• An instance has a persistent, personal state

• It owns a set of variables
• Its services all access this state

• An instance exhibits identity

• The state of an instance can change, but it's still the same instance
• int a{3}; a++;

• Several instances can possess the same state, but they are distinct instances
• int a{3}; int b{3};

3

Where do objects come from?
• Objects are the latest evolutionary stage of software 'chunks'

• A chunk is simply a piece of code that represents data or operates on data,
e.g.

• We want chunks to be
• Powerful: provide more and better services

• Cohesive: perform their task and nothing more (simplicity)

• Loosely coupled: changes do not impact clients of the chunk

Data:
• Symbolic*word*(assembler)

• Variables,*e.g.*int a;
• Data*structures

Operations:
• Opcode*(assembler)

• Statements,*e.g.*a=b*c+d
• Functions*e.g.

double*force(double*m,*double*a);

4

Inversion
• Traditionally, our chunks are data structures and functions

• Functions interact by calling each other and passing data
• Functions have to manage and pass the data they require

• In object orientation these responsibilities are inverted

• Now our chunks are object instances that
• Encapsulate pieces of related data
• Provide services that can operate on this data

• Object instances interact with each other by requesting services: messaging

• Objects are responsible for managing both the data and the code required to handle the
messages they might receive

• Can be thought of as the data being in charge – the data knows how to
process itself!

5

More on object instances
• Instances have access to code blocks they can use to provide their services

• It's important to note that instances don't carry around their own copies of the
service code:

• Service code blocks are managed for object instances by classes

code {
...
}

Object

Object

code {
...
}

6

Classes
• structs and classes are very similar behind the scenes

but are used to implement different concepts:

• A struct should be used when you simply want to
bundle together some related data (e.g. our command-
line arguments)

• A class should be used when the data inside are
correlated and you want to provide an interface to that
e.g. a std::vector keeps track of the elements
themselves, the number of elements, its current
capacity, etc.

7

Defining a class
• A class is defined in a similar way to a struct

• NB the public access specifier

• By default a class's members are hidden to the outside – more
on this later…

• For now, you need to explicitly make them available

//Employee.hpp
class Employee {
public:
std::string name; ///< The name of the Employee
std::string niNumber; ///< The NI number of the Employee
int salary; ///< Total salary of the Employee in pounds

};

8

Constructors
• A constructor is a special function that is used to setup the initial state of an

object when it is created

• It is named the same as the class name

• It has no return type

• It is declared inside the class

class Employee {
public:
Employee(const std::string& empName, const std::string& empNI);

std::string name; ///< The name of the Employee
std::string niNumber; ///< The NI number of the Employee
int salary; ///< Salary of the Employee in pounds

};

9

Constructors
• A constructor is defined like any other function

• Put the definition in the .cpp file

• You need to specify the scope (i.e. that we're implementing the function called
Employee within the Employee class) using the scope-resolution operator ::

• The function can access the members of the class directly:

• This is equivalent to doing:

Employee::Employee(const std::string& empName, const std::string& empNI)
{
name = empName;
niNumber = empNI;
salary = 0;

}

int salary; //Declare
salary = 0; //Initialise

10

Constructors
• As we’ve said before, it is always safer (and sometimes

necessary) to initialise variables at definition

• Which is more like:

• Data members declared as const must be initialised this way

Employee::Employee(const std::string& empName, const std::string& empNI)
: name{empName}, niNumber{empNI}, salary{0}

{
}

std::string name {empName}; //Declare and initialise
std::string niNumber {empNI}; //Declare and initialise
int salary {0}; //Declare and initialise

11

Default values for members

• You can set default values of data members directly in
the class declaration

• This defines the default value used for initialisation in
case one is not given in the constructor

class Employee {
public:
Employee(const std::string& empName, const std::string& empNI);

std::string name; ///< The name of the Employee
std::string niNumber; ///< The NI number of the Employee
int salary = 0; ///< Salary of the Employee in pounds

};

12

Constructing an object

• The std::string and std::vector objects that we’ve
already been using are defined as classes

• So, we can use a similar syntax as we used to construct
those:
#include "Employee.hpp"

int main() {
//Calls the contructor we declared
Employee jane {"Jane", "BG123456A"};
std::cout << jane.name << "\t" << jane.niNumber << "\n";

}

13

Aside: naming conventions
• Most software projects have naming conventions

• In this course we use:

• UpperCamelCase for class and struct names

• lowerCamelCase for function and variable names

• NB that constructors are an exception since they must
have exactly the same name as the class

• lowerCamelCaseWithTrailingUnderscore_ for data members

• This makes it easier to see, at a glance, the context of a
name in the source code

14

Exercise: skeleton of a CaesarCipher class
1. Write the declaration of a CaesarCipher class

• This should go in a new header file
MPAGSCipher/CaesarCipher.hpp

• The key should be the only member variable (for now)

• The constructor should take the key as its single
argument

2. Implement the constructor in the file
MPAGSCipher/CaesarCipher.cpp

15

Multiple Constructors
• A class can have more than one Constructor

• For example, we might want to be able to specify the
starting salary of our Employee or perhaps we don’t yet
know their NI number so just want to provide the name:

class Employee {
public:
explicit Employee(const std::string& empName);

Employee(const std::string& empName, const std::string& empNI);

Employee(const std::string& empName, const std::string& empNI,
int empStartingSalary);

16

explicit Constructors
• In the previous example we had the explicit keyword in front of the first constructor:

• This is because this constructor takes only a single argument and such single-argument constructors
can, in general, be used for implicitly converting between different types

• For example, without the explicit keyword, code like the following would compile without warning:

• So, a temporary Employee object would be created and added to the team, which is probably not
what was intended here

• Using the explicit keyword indicates that we don’t want this constructor to be used in such a way

explicit Employee(const std::string& empName);

void addToTeam(const Employee& emp);

// in some other function
{

std::string name{"Jane"};
addToTeam(name);

17

Exercise: a 2nd constructor for CaesarCipher
1. Add a second constructor to your CaesarCipher class

that takes the key as a string

• You can move the code that does the conversion
from a string to an unsigned integer from your main
function into this constructor

• Your main function can then be simplified to use this
new constructor instead

2. Make sure that both of your single-argument
constructors are declared explicit

18

Encapsulation
• Encapsulation is an important concept in OO and is the separation of the

interface to something from its underlying implementation

• Interface: how we access something, e.g. call to a function

• Implementation: how that thing performs the task, e.g. the actual code in the
function

• This concept is also referred to as 'programming by contract'

• You don't care how a service is provided, just that it is provided

• The “stuff” encapsulated by an object is its knowledge of how to be itself

• It knows how its services are provided

• It knows how to store its state

• It encapsulates this knowledge inside a services interface

19

Encapsulation Example 1
• Consider an object to represent a point in 2D space, lets call it Point2D

• What services might it provide?

• find cartesian x coordinate

• find cartesian y coordinate

• find distance from origin

• So we could diagrammatically represent an instance as:

Point2D

distancecartesianX

cartesianY

Message&Point2D&instance
to&obtain&its&cartesian&y

coordinate.

20

Encapsulation Example 2
• The important thing to note is that we've said nothing about how the Point2D

instance will obtain, say, the distance

• That's fine – we the client do not and should not care

• Point2D's state could be represented by two double variables using cartesian
or polar coordinates:

• The implementation of, e.g., the distance service will be different in each case,
but the client will not notice

Point2D
double x
double y

Point2D
double r
double phi

21

Information Hiding
• Encapsulation differentiates the 'outside' of an object (its service interface) from the

'inside' (its state)

• OO languages provide syntax to express this inside/outside structure, and can
check the security of this boundary

• By doing this, we can hide the state information inside from clients of the object –
why hide this?

• Client has no need to know what code object uses or how it represents its state, only care
that a service can be messaged

• Client is not impacted by nature of the code used by the object or its variables

• Client will not be impacted by changes to code or variables

• Encapsulating data and hiding it behind a service interface, making the object a
'black box’, helps to:

• Increase cohesion (information doesn't 'leak' elsewhere)

• Decrease coupling (only link is messaging services)

22

Encapsulation & information hiding
• For example, the name of our Employee is currently stored as a

single std::string

• However, in the future we may decide instead to store it as a pair
of strings for first and last name

• Making the data member private and only allowing
use/manipulation of it via services allows the details of the
implementation to be hidden

class Employee {
public:
void setName(const std::string& newName);
std::string name() const;

private:
std::string name_; ///< The name of the Employee

};

23

Messaging 1
• Objects hide their implementation behind a service interface – we ask

'what can you do?' rather than 'how do you do it?'

• e.g. you've used vectors, you don't know how they are implemented, but
you know you can add elements to them, access elements, etc.

• There is a slight subtlety here, as inversion, encapsulation and
information hiding could not happen if the client were directly calling
the service code

• OO changes from instructions (function calls) to requests (messages)

• e.g. if we message an object for its service 'evaluate' we are not directly
calling a function 'evaluate'

• There's an extra layer involved behind the service interface

24

Messaging 2
• In messaging, the client no longer directly selects the code to be run
• You message an object to provide a service, it decides which code runs
• It's important to understand this subtle distinction between calls and

requests – and it's probably easiest to see this diagrammatically:

Client

evaluate () {
...impl...
}

Function(Call:
get$direct$answer

Object
evaluateClient

evaluate () {
...impl...
}

Message:
Object$locates$code

call$evaluate
code$block

message$for
evaluate$service call$code$block

providing$service 25

Identity and Encapsulation
• Recall that earlier we discussed objects exhibiting
identity

• Object instances have identity distinct from their state:
• An object can change state yet still be the same instance

• e.g. we message a StraightLine object requesting it to change its
slope to a supplied value

• Two objects can possess the same state, but be distinct instances
• e.g. two StraightLine objects have the same slope and intercept

• Identity is essential for encapsulation to work
• We must be able to identify a particular object instance without

knowing its state

26

Programming by contract – client point of view

• I want you to provide a service

• I don't care how you do it

• The answer is the important thing, not how it was arrived at

• I don't really care if you do it

• The task (or parts of it) can be delegated

• I don't really care what you are

• As long as the server does what you want you don't care about what
other things it might do or indeed anything else about it

27

Programming by contract – server point of view

• I don't know who is messaging or what they will do with the
information

• There is no need to know

• I know one way of functioning

• I don't know who I will be

• You will be an object instance but you don't know which one,
that doesn't matter

• It's up to me how I provide my service
28

Type

• An object's type is the set of message signatures that it
will accept

• Weak typing – only checked at run-time, the errors go
to the user rather than the programmer

• Strong typing – the compiler checks that objects are
capable of acting in their intended role

• C++ is an example of a strongly typed language

29

Classes

• Classes are sources of object instances

• They provide a single definition of their instances

• The variables (data) – each instance has its own copy
of the data that it carries around with it

• The mechanisms (code) – each instance does not
carry a copy of the code around but has access to it

30

Accessor functions
• In some cases you may want functions that simply get or set the value of a

particular data member (so-called 'getters' and 'setters')

• Such functions are generally rather simple:

• But they can be more complex:

void Employee::setName(const std::string& newName)
{

name_ = newName;
}

std::string Employee::name() const
{

return name_;
}

std::string Employee::name() const
{

return firstName_ + " " + lastName_; //for example...
}

31

Member functions

• Member functions can do anything, not just get and set

• Indeed, a class that consists purely of getters and
setters really ought to be a simple struct!

• Classes can perform more complex (inter)actions:
class Employee {
public:
void promoteToGrade(const Grade& newGrade);
//...

};

void Employee::promoteToGrade(const Grade& newGrade)
{

title_ = newGrade.title();
salary_ = newGrade.startSalary();

}
32

const functions
• You may have noticed that the name() function has a const label at the end

• This means that nothing inside that function can change the object it is acting on

• It also means you can call it on a const object

• Member functions should be made const unless explicitly needed otherwise

std::string Employee::name() const
{

name_ = "Fran"; //Compiler error
return name_;

}

const Employee bill {"Bill"};
bill.setName("John"); //Compiler error
std::cout << bill.name(); //This is fine

33

Exercise: adding functionality
• Add a member function, called applyCipher, to your CaesarCipher class

that encrypts or decrypts a string and returns the resulting string

• You can use the runCaesarCipher function (you can find it in
MPAGSCipher/RunCaesarCipher.cpp) as the basis for this but with a
few adaptations:

• You should use the key_ data member as the key

• You can also make the alphabet another data member

• The two data members should now be made private

• In your main function, create an instance of this class and then call its
applyCipher function instead of using the runCaesarCipher function

34

Documentation

• All classes, functions and data members should be
commented

• A class comment should describe what the class is
used for and how to use it

• A function comment should describe all arguments, the
return value, any side effects and if applicable any pre-
or post- conditions

• A standard syntax exists called Doxygen

35

Doxygen

• Doxygen uses a special comment block syntax. Single
line comments start with /// and multi-line comments
start with /**

• It defines a number of special commands which start
with a backslash for structured information

• Documentation comment comes just before the thing it
is annotating

36

/**
* Employee has a salary and a name
* Use it by doing ...
*/

class Employee {
public:
/**
* Create a new Employee with a name and default value for salary
*
* \param newName the name of the Employee
*/

explicit Employee(const std::string& newName);

/**
* Sets the salary of the employee.
*
* \param newSalary the value to set the salary to
*/

void setSalary(const int newSalary);

/// \return the base gross salary of the employee
int salary() const;

/// \return the name of the employee
std::string name() const;

//...
37

We'll cover how to generate this automatically in
more detail next week

Automatic documentation

38

Exercise: document your new class

• Add some Doxygen documentation to your
CaesarCipher class

• Make sure all the functions and data members are
documented as well as the class overall

39

Enumerations

• Enumerations (enum) provide a way of defining a set of
named values

• They are useful when there is a small finite set of
possible values and you want to perform different
actions depending on the value

40

Enumerations

• Declaring an enum is similar to declaring a class

• It makes a new type, which can be instantiated:

/// The rank of the employee
enum class Rank {
Junior, ///< A new person at the company
Senior, ///< Someone whos been here a while
Chief ///< Someone super special

};

Rank personsRank {Rank::Senior};

if (personsRank == Rank::Senior) {
std::cout << "Senior" << std::endl;

}

41

Enums and switches

• Enums are very useful when mixed with switch
statements

• The compiler will warn you that you missed one of the
entries in the enum (Rank::Chief)

Rank personsRank {Rank::Senior};

switch(personsRank) {
case Rank::Junior:
return 0;

case Rank::Senior:
return 3000;

}

42

Enum conversions
• Enumerations are represented by integers behind the scenes

• However, C++11 introduced strong typing of enumerations,
meaning you can't convert freely between them:

enum class Colour {
Red,
Blue,
Green

};

Colour c {Colour::Red};
c = Rank::Senior; //COMPILER ERROR

//Rank::Senior is '1', doesn't set 'c' to 'Blue'

if(c == Rank::Junior) { //COMPILER ERROR
std::cout << "This doesn't make sense" << std::endl;

}
43

Exercise: enumerate the cipher mode

• Add an enumeration called CipherMode to designate
the encryption mode (Encrypt or Decrypt)

• This declaration should go in a new file:
MPAGSCipher/CipherMode.hpp

• It only needs the two states

• Make sure you document it

• Use this enumeration instead of the 'encrypt' boolean
flag in the rest of your code

44

Operator overloading

• Built-in types in C++ know how to perform
mathematical operations

• They can do +, -, *, / between them

• They can also be printed with std::cout <<

• More complex types can do more, like std::vector and
its subscript[] operator

45

Operator overloading

• We can provide this functionality for our own types by
providing specially named functions, either as members
of our class or as free functions that take our class as
an argument

• When the compiler encounters a line of code such as:
std::cout << employee << std::endl;

• It will look for a function called operator<< that takes a
std::ostream& and an Employee as arguments

46

Stream operator

• We define the overload function like any other

• Similarly you can overload other operators, see:
http://en.cppreference.com/w/cpp/language/operators

• Only overload those that make sense!
• Employee + Employee doesn't mean anything!

std::ostream& operator<<(std::ostream& os, const Employee& employee)
{

os << " Name: " << employee.name() << std::endl;
os << "Salary: " << employee.salary() << std::endl;
return os; //Return the reference we were passed

}

47

http://en.cppreference.com/w/cpp/language/operators

