
C++ References

Tom Latham

1

Function arguments
• We have seen this morning that functions receive copies of the arguments

passed to them

• This is referred to as ‘passing by value’

• For many situations this is OK

• However, consider the following two scenarios where this causes problems:

• The function cannot change the value of the argument in such a way that it is
also changed in the calling scope

• If the object being passed to the function is complicated or large, e.g. a big
std::vector or a long std::string there can be considerable overhead
from making the copy, both in terms of time and memory

• In these cases, it would be better if a function could act on the original object

2

References
• References are essentially a means

of creating a new variable for an
existing object

• Here the new variables are ‘a’ and ‘b’

• When the swap function is called they
are assigned the objects currently
referred to by the variables ‘x’ and ‘y’

• The ampersand symbol (&) declares
that ‘a’ and ‘b’ are references

• This then allows functions to act on
the actual objects passed to them
rather than copies of them. This is
referred to as ‘passing by reference’.

#include <iostream>

void swap(double& a, double& b)
{
double tmp {b};
b = a;
a = tmp;

}

int main()
{
double x {42.3};
double y {11.2};

std::cout << x << "\t" << y << "\n";

swap(x,y);

std::cout << x << "\t" << y << "\n";

}

3

References
• References are essentially a means

of creating a new variable for an
existing object

• Here the new variables are ‘a’ and ‘b’

• When the swap function is called they
are assigned the objects currently
referred to by the variables ‘x’ and ‘y’

• The ampersand symbol (&) declares
that ‘a’ and ‘b’ are references

• This then allows functions to act on
the actual objects passed to them
rather than copies of them. This is
referred to as ‘passing by reference’.

#include <iostream>

void swap(double& a, double& b)
{
double tmp {b};
b = a;
a = tmp;

}

int main()
{
double x {42.3};
double y {11.2};

std::cout << x << "\t" << y << "\n";

swap(x,y);

std::cout << x << "\t" << y << "\n";

}

4

References
• References are essentially a means

of creating a new variable for an
existing object

• Here the new variables are ‘a’ and ‘b’

• When the swap function is called they
are assigned the objects currently
referred to by the variables ‘x’ and ‘y’

• The ampersand symbol (&) declares
that ‘a’ and ‘b’ are references

• This then allows functions to act on
the actual objects passed to them
rather than copies of them. This is
referred to as ‘passing by reference’.

#include <iostream>

void swap(double& a, double& b)
{
double tmp {b};
b = a;
a = tmp;

}

int main()
{
double x {42.3};
double y {11.2};

std::cout << x << "\t" << y << "\n";

swap(x,y);

std::cout << x << "\t" << y << "\n";

}

5

Const references
• But what if you do not want to

change the object being passed
but you still want to use pass by
reference because it is large?

• Thankfully there is a way to
ensure (compiler enforced) that
the argument is not changed, by
using a reference to a const
object, often termed a ‘const
reference’

#include <iostream>

void swap(double& a, double& b)
{
double tmp {b};
b = a;
a = tmp;

}

void print(const double& a,
const double& b)

{
std::cout << a << "\t" << b << "\n";

}

int main()
{
double x {42.3};
double y {11.2};
print(x,y);
swap(x,y);
print (x,y);

}

6

Rule of thumb for function arguments
• If the argument is a built-in type

you can use pass by value

• You’ll most likely want to use const
here – it is surprisingly rare that you
actually want to change the value of
the arguments and it is good to
enforce the lack of change to avoid
silly mistakes

• For everything else use const
references

• Unless you need to change the
object, in which case drop the
const

double square(const double x);

void printString(const std::string& s);

void toLowerCase(std::string& s);

7

Returning references
• Should large objects also be returned by reference?

• This is a bit trickier since you have to think about the lifetime of
the object being returned

• If it is local to the returning function, the answer is definitely 'No!'

• It will be destroyed as soon as the function returns, so you’ll
be returning a reference to something that no longer exists!

• At the moment this is the only kind of object lifetime you’ve seen.
We will see other cases in future weeks that mean that return by
reference is viable and even desirable. But until then, don't do it.
And even then, you always need to think carefully about it!

8

“Returning” via reference arguments

• Reference arguments can be used as a way of
“returning” more than one object or of “returning” a very
large object

• Instead of receiving the return of the function, a “blank”
object (i.e. constructed with some default value(s)) is
first constructed and is then immediately provided as a
reference argument to the function

• When control returns to the calling scope, the state of
the object passed could have been modified

9

Exercise on function arguments
• You can now also package the parsing of the command-line

arguments into a function, which you should call
"processCommandLine"

• Let's think about and discuss what this needs to do…
• Then we can decide how many and what types of arguments

the function needs
• Finally, we need to bear in mind the rule-of-thumb to choose

the best forms (value/reference, const/non-const) for each of
those arguments

10

Exercise on function arguments
• You can now also package the parsing of the command-line

arguments into a function, which you should call
"processCommandLine"

bool processCommandLine(
const std::vector<std::string>& args,
bool& helpRequested,
bool& versionRequested,
std::string& inputFileName,
std::string& outputFileName)

{
...

}

11

Ranged-based for loops
• Now we can use references, we can

look at a new way of looping over a
container that was introduced in C++11:
the range-based for loop

• Useful when one needs to simply use or
operate on each element in turn

• If you want to modify the element, just drop
the const – see the second example

• We couldn't have used it in processing
the command line arguments, for
example, since we sometimes need to
know where we are in the container and
even operate on two elements at once

std::vector<int> my_ints = {1, 2, 3};

for (const int& element : my_ints) {
std::cout << element << "\n";

}

for (int& element : my_ints) {
++element;

}

for (const int& element : my_ints) {
std::cout << element << "\n";

}

12

The 'auto' keyword
• We can also see the first use case

for the new 'auto' keyword

• The compiler is able to deduce the
type of the element based on the
type held in the container

• The 'auto' keyword allows us to
take advantage of this and so avoids
too much retyping when reusing or
modifying code
• We'll meet other places where it comes

in very useful

• Important, however, not to overuse it
since it can make code harder to
understand if used too much or in the
wrong places

std::vector<int> my_ints = {1, 2, 3};

std::string my_str {"Hello world!"};

for (const auto& elem : my_ints) {
std::cout << elem << "\n";

}

for (const auto& elem : my_str) {
std::cout << elem << "\n";

}

13

