(++File 1/0

Tom Latham

THE UNIVERSITY OF

WARWICK



Input/Output streams

- We've so far seen that we can use the std: : cout and
std: : c1n objects to print output to the screen and to

read input from the keyboard

* These are examples of I/O streams (hence the name of
the 1ostream header!)

 We'd like to be able to use these to read from and write
to files as well (helps to avoid a lot of typing!)

- Can use the types provided in the fstream header file

2



Output file streams

» To use an output file stream you must:
» Include the appropriate header file:
#1nclude <fstream>
- Instantiate an instance of an ofstream type:

std::string name {"myoutputfile.txt"};
std::ofstream out_file {name};

- Unlike with std: : cout, you need to check that the file was correctly opened
before you can write to it:

bool ok_to_write = out_file.good();
+ Then you can use that instance exactly as you would use std: : cout

out_file << "Some text\n";



Input file streams

« To use an input file stream you must:
- Again include the appropriate header file:
#1nclude <fstream>
- Instantiate an instance of an 1fstream type:

std::string name {"myinputfile.txt"};

std::i1fstream in_file {name};
« Again, you need to check that the file was correctly opened before you can read from it:
bool ok_to_read = in_file.good();
- Then you can use that instance exactly as you would use std: :cin

char inputChar {'x'};

in_file >> inputChar;



Closing files (and opening new ones)

- With both input and output files you can do:
file.close();

« This closes the file and any further attempts to read or write will fail

- It is done automatically when a file stream object is destroyed (e.g. when it goes out of scope), so
you don’t always need to do this explicitly

- However, you do need to do this first if you want to then use the same file stream object to open
another file (although the circumstances under which you would want to do this are rare — it is clearer
to use a separate object for each file):

file.open("myfirstfile.txt");

file.close();
file.open("myotherfile.txt");



Appending rather than overwriting

By default when you open an output file stream and the file
already exists, it will overwrite the contents of the file

» However, it is possible to open an output file stream in a
mode where whatever you write to it will instead be
appended to the file:

std: :ofstream out_file{ name, std::10s::app };
» For more detalils on this see, for example:

http://en.cppreference.com/w/cpp/io/ios_base/openmode

6


http://en.cppreference.com/w/cpp/io/ios_base/openmode

Exercise on file |/0

- Now we have the knowledge necessary to implement
reading the input text from file rather than the keyboard and
to write the cipher text to a file rather than the screen

* You already have command line options that provide the
names of these files

1. Implement the new code to perform these operations if the
corresponding option is specified on the command line (if
the option is not specified, the program should continue to
read from the keyboard and/or write to screen, as

appropriate)



