
Introducing the Caesar cipher

Tom Latham

1

The Caesar Cipher

• Finally, we’re ready to implement our first cipher

• A substitution cipher - each letter in the input text is
replaced by another according to a constant rule

• Named after Julius Caesar - the first recorded user of
this cipher!

2

Caesar Cipher Encryption Substitution Rule

• Replace each letter in Plaintext string by that K letters
rightward in the Alphabet.

• If the shift goes beyond the end of the Alphabet, wrap
around to ‘A’ and continue counting rightwards.

• Shift K is an integer [0,25] and is the Key for the cipher

3

Encrypting With the Caesar Cipher, K=5

ABCDEFGHIJKLMNOPQRSTUVWXYZ

HELLOWORLD
Plaintext

Ciphertext

MJQQT

K=5 K=5

4

Encrypting With the Caesar Cipher, K=5

ABCDEFGHIJKLMNOPQRSTUVWXYZ

HELLOWORLD
Plaintext

Ciphertext

MJQQTBTWQI

K=5K=5 Wrap

5

Caesar Cipher Decryption Substitution Rule

• Replace each letter in CipherText by that K letters
leftward in the Alphabet.

• If the shift goes beyond the start of the Alphabet, wrap
around to ‘Z’ and continue counting leftwards.

• Shift K is an integer [0,25] and is the Key for the cipher

6

Decrypting With the Caesar Cipher, K=5

ABCDEFGHIJKLMNOPQRSTUVWXYZ

MJQQTBTWQI
Ciphertext

Plaintext

HELLOWORLD

K=5 K=5Wrap

7

C++ Implementation
• Many ways to implement the Caesar Cipher in C++

• Today we're going to create a function called runCaesarCipher

• Let's think about what the interface of our function should be:

• What inputs are needed?

• What will the output be?

• Hence what arguments should it have? And what return type?

• What else is involved?

8

C++ Implementation
• Many ways to implement the Caesar Cipher in C++

• Today we're going to create a function called runCaesarCipher

• Let's think about what the interface of our function should be:

• What inputs are needed? Input text, Key, Encrypt/Decrypt

• What will the output be? Output text

• Hence what arguments should it have? And what return type?

• What else is involved? The alphabet

std::string runCaesarCipher(const std::string& inputText, const size_t key, const bool encrypt)

Could have used a reference argument for the output text but since C++11 there is little efficiency gain and the intention is clearer this way.

9

C++ Implementation

std::string runCaesarCipher(const std::string& inputText,
const size_t key, const bool encrypt)

{
// Create the alphabet container and output string

// Loop over the input text

// For each character find the corresponding position in the alphabet

// Apply the shift (+ve or –ve depending on encrypt/decrypt)
// to the position, handling correctly potential wrap-around

// Determine the new character and add it to the output string

// Finally (after the loop), return the output string
}

10

Exercise implementing the Caesar Cipher
1. Add handling of new command-line arguments that allow the user to:

a) Specify whether to encrypt or decrypt

b) Provide the cipher key

2. Implement the runCaesarCipher function (create new .hpp and .cpp files
in the MPAGSCipher directory)

3. In your main function, use this function to encrypt/decrypt the transliterated
text

4. You'll need to update the CMakeLists.txt file to build and link with this
new code

5. When you have finished, commit and tag your repository (and push to github)

ü There are some hints on the next slide to help with a few tricky points

11

Implementation hints
• You will need to convert a string into an unsigned long to get the

key from the command line – look at the online documentation:
http://en.cppreference.com/w/cpp/string/basic_string

• You can use either a std::vector<char> or a std::string
to hold the alphabet

• To handle the “wrap-around”, the modulus operator '%' could be
useful

• Test that you have things working correctly by running the
decrypt on your encrypted output
• There are also online javascript implementations that you can

check against

1
2

http://en.cppreference.com/w/cpp/string/basic_string

