Quick Recap

Recap - Git Version Control

We covered how to use Git for Version Control:

[Files \
Repo (
\ Examples
Git
T Mercurial
Bazaar
[Files /

Your Working Copy

Recap - Writing and Compiling Code

C++ code can be written using any text editor, but to create the actual
programs requires a compiler that creates the machine-readable code

#include <iostream>

N Compiled Code Additional Libs

int main ()

{ .
// Read and print three _> !..-._ : |
// floating point numbers i e4 L
std: :cout << "Give 3 nums" << std::endl; ‘Jf’"“‘-,_f w | \
float a{0}, b{0}, c{0}; i r 2| o ™
std::cin >> a > b >> c; H\,W';-"‘“ = =Y
std::cout << "You gave... "; ‘J pi, = i
std::cout << a << ", " << b << ", " — “w@

<< ¢ << std::endl;
}
Raw Code

Executable =

Recap - Basic Syntax of a C/C++ Program

We covered the basic syntax of C++

Preprocessor directive to
include other code - see later!

A function definition

include <iostrea - : :
ill N mzin 0 lA)}/ see later It is good practise to add

{ comments to your code -
// This is a comment these are ignored by the
/* This is a < compiler but help you
Multiline comment */ explain what you're
trying to do, both to
std: :cout << “Hello World!\n”; other people and
yourself a few months
} on!
The braces indicate blocks ('scope’) Every statement in C/C++ must be ended
of code, in this case a function with a semi-colon. This is a frequent cause

of compiler errors so watch out!
4

Recap - Types, Objects, Values and Variables

We covered the basics of how data is stored in C++:

> Types - How to interpret data in a memory location (‘object’) and what
operations can be performed by it

> Object - Defined area of memory that holds the data ('values') associated
with a type

> Value - Actual data/bits in memory interpreted by the 'type'

> Variable - A flag or name of an area of memory (‘object)

As well as how they are manipulated using operators:
> Assignment:a=b
> Dec/Increment: a--, a++
> Bitwise shift/stream:a<<b,a> b
> Modulus: %
> Array: []

Recap - Program Flow

We looked at conditionals and loops:

if (a == b)
{
// Do something...
}
switch (flag) else
{ {
case 0: . .
// Do something for this value // Do something else instead
break; }
case 1:
// Do something else for this value
break;
default:
// Do something for all other values . .
break; int i{0};
} while (i < 10)
{
// Do something 10 times
++1i;
}

for (int i{0}; i < 10; ++i)
{

// Do something 10 times
}

Recap - Vectors

We also looked at the first basic container - a vector:

#include <vector>
#include <string>
#include <iostream>

int main ()
{
// Construct a vector
std: :vector<double> vec = {1.2, 3.4, 5.6};

// print out the vector size (3)
std: :cout << vec.size() << std::endl;

// add a few elements
vec.push back(7.8);
vec.push back(9.1);

// vector size (5)
std: :cout << vec.size() << std::endl;

// remove an element
vec.pop_back() ;

// vector size (4)
std: :cout << vec.size() << std::endl;

// loop over the vector using an index counter
for (size_t i{0}; j < vec.size(); i++)
{
std::cout << “Index: “ << i << " " <K< vec[i] << std::endl;

}

Recap - Command Line Arguments

Finally, we covered getting information into your program from the user
using command line arguments:

Reading arguments in (++

* Due to backward compatibility with C, the way that these appear in main()
are as two function arguments:

* argc is an integer - the number of arguments
- argv is a C-style array of C-style strings - the arguments themselves

» These are rather fiddly to work with, so best to immediately convert them into
a more usable form, a std::vector of std::string objects:

int main(int argc, char* argv(])

{

std::vector<std::string> cmdLineArgs { argv, argv+argc };

» We can then loop over and/or access the individual arguments as with any
std::vector

New Github Classroom for Day 2

 As mentioned last week, there will be a new ‘base’ repo for each day
e This will contain the ‘ideal solution’ to the previous day’s exercises

* Clone the created repository from the link on the course pages just as with last
week and you're good to go!

Writing C++ Functions

Mark Slater

UNIVERSITYOF
BIRMINGHAM

10

Program Flow - Writing Functions (1)

» We saw last time that functions can be very useful ways of re-using code.
As well as calling external functions written by someone else, it is also very
useful to write your own. Just like a variable, a function must be declared
before it can be used:

<return_type> <function_name> (<arguments>) { <code_block> }

* After declaration, the function is called by just giving the function name
and the required arguments in brackets just as we saw previously

* Animportant point to remember is that variables are passed 'by value' - i.e.
the object value passed is copied to the new variable, the object itself is not
sent to the function

* Thisisimportant to remember when dealing with 'large’ objects like strings
or vectors - a copy will be made which can be slow!

11

Program Flow - Writing Functions (2)

Declare and
define a function
that multiplies
two numbers
together and
returns the result

Note that you have
already
encountered a
function: the 'main'
function. Thisis a
special function
that is where the
program starts, but
it behaves in the
same way

#include <iostream>

double multiply(const double first, const double second)

{
}

void print(const double value)

{
}

return first * second;

std: :cout << “Result: “ << value << std::endl;

int main ()

{

double a{43.0},
double b{21.0},

double c{ multiply(a, b) };
print(c);

print(multiply(a, c));

This function
prints the given
number with an

additional
message

Note that, the variables here
WILL NOT BE CHANGED as
the values are COPIED to the
function where new objects
are created

12

Documenting Function Behaviour

 Though we have already highlighted the importance of documenting your code in
comments, with functions there are more things to consider

* We will be covering one popular style of comment documentation in detail later,
but for the moment, make sure you are detail:

> A brief, one line description of the function

> If necessary, more info about how to use the function and what it does
> The arguments to the function
> What it returns

double multiply(double a, double b)
{

/* multiply two values together and return the result

double a: First number to multiply
double a: Second number to multiply

return: The value of the product of a and b

*/

return a * b;

}
13

Exercise - Start Using Functions

* Now you have learnt how to write your own functions, we can now
start using them in your cipher code to 'tidy things up' a bit

* For the next exercise, move your transliteration code from within the
'while' loop into a function called 'transformChar’ that takes a char
and returns a string after applying the transliteration:

std: :string transformChar(const char in_char)

* After removing code from the 'while' loop, in its place you will need to
add a call to the 'transformChar' function and add the return value to
the 'inputText' string

* Your new function will have to be put before your main function
where it's referenced

14

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

