

1

Quick Recap

2

We covered how to use Git for Version Control:

Recap – Git Version Control

3

#include <iostream>

int main()
{
 // Read and print three
 // floating point numbers
 std::cout << "Give 3 nums" << std::endl;
 float a{0}, b{0}, c{0};
 std::cin >> a >> b >> c;
 std::cout << "You gave... ";
 std::cout << a << ", " << b << ", "

<< c << std::endl;
}

C++ code can be written using any text editor, but to create the actual
programs requires a compiler that creates the machine-readable code

Raw Code

Compiled Code Additional Libs

Executable

Recap - Writing and Compiling Code

4

#include <iostream>
int main()
{
 // This is a comment
 /* This is a
 Multiline comment */

 std::cout << “Hello World!\n”;

}

We covered the basic syntax of C++

Preprocessor directive to
include other code – see later!

The braces indicate blocks ('scope')
of code, in this case a function

It is good practise to add
comments to your code –
these are ignored by the

compiler but help you
explain what you're
trying to do, both to

other people and
yourself a few months

on!

A function definition
- see later

Every statement in C/C++ must be ended
with a semi-colon. This is a frequent cause

of compiler errors so watch out!

Recap - Basic Syntax of a C/C++ Program

5

We covered the basics of how data is stored in C++:
➔ Types – How to interpret data in a memory location ('object') and what

operations can be performed by it
➔ Object – Defined area of memory that holds the data ('values') associated

with a type
➔ Value – Actual data/bits in memory interpreted by the 'type'
➔ Variable – A flag or name of an area of memory ('object')

 As well as how they are manipulated using operators:
➔ Assignment: a = b
➔ Dec/Increment: a--, a++
➔ Bitwise shift/stream: a << b, a >> b
➔ Modulus: %
➔ Array: []

Recap - Types, Objects, Values and Variables

6

We looked at conditionals and loops:

Recap – Program Flow

int i{0};
while (i < 10)
{
 // Do something 10 times
 ++i;
}

for (int i{0}; i < 10; ++i)
{
 // Do something 10 times
}

switch (flag)
{
 case 0:
 // Do something for this value
 break;

 case 1:
 // Do something else for this value
 break;

 default:
 // Do something for all other values
 break;
}

if (a == b)
{
 // Do something...
}
else
{
 // Do something else instead
}

7

We also looked at the first basic container – a vector:

Recap – Vectors

#include <vector>
#include <string>
#include <iostream>

int main()
{
 // Construct a vector
 std::vector<double> vec = {1.2, 3.4, 5.6};

 // print out the vector size (3)
 std::cout << vec.size() << std::endl;

 // add a few elements
 vec.push_back(7.8);
 vec.push_back(9.1);

 // vector size (5)
 std::cout << vec.size() << std::endl;

 // remove an element
 vec.pop_back();

 // vector size (4)
 std::cout << vec.size() << std::endl;

 // loop over the vector using an index counter
 for (size_t i{0}; j < vec.size(); i++)
 {
 std::cout << “Index: “ << i << “ “ << vec[i] << std::endl;
 }
}

8

Finally, we covered getting information into your program from the user
using command line arguments:

Recap – Command Line Arguments

9

● As mentioned last week, there will be a new ‘base’ repo for each day
● This will contain the ‘ideal solution’ to the previous day’s exercises
● Clone the created repository from the link on the course pages just as with last

week and you’re good to go!

New Github Classroom for Day 2

10

Writing C++ Functions
Mark Slater

11

● We saw last time that functions can be very useful ways of re-using code.
As well as calling external functions written by someone else, it is also very
useful to write your own. Just like a variable, a function must be declared
before it can be used:

<return_type> <function_name> (<arguments>) { <code_block> }
● After declaration, the function is called by just giving the function name

and the required arguments in brackets just as we saw previously
● An important point to remember is that variables are passed ' by value' – i.e.

the object value passed is copied to the new variable, the object itself is not
sent to the function

● This is important to remember when dealing with 'large' objects like strings
or vectors – a copy will be made which can be slow!

Program Flow – Writing Functions (1)

12

#include <iostream>

double multiply(const double first, const double second)
{
 return first * second;
}

void print(const double value)
{
 std::cout << “Result: “ << value << std::endl;
}

int main()
{
 double a{43.0},
 double b{21.0},

 double c{ multiply(a, b) };
 print(c);

 print(multiply(a, c));
}

Program Flow – Writing Functions (2)

Declare and
define a function

that multiplies
two numbers
together and

returns the result

Note that you have
already

encountered a
function: the 'main'
function. This is a
special function
that is where the

program starts, but
it behaves in the

same way

This function
prints the given
number with an

additional
message

Note that, the variables here
WILL NOT BE CHANGED as

the values are COPIED to the
function where new objects

are created

13

● Though we have already highlighted the importance of documenting your code in
comments, with functions there are more things to consider

● We will be covering one popular style of comment documentation in detail later,
but for the moment, make sure you are detail:

➔ A brief, one line description of the function
➔ If necessary, more info about how to use the function and what it does
➔ The arguments to the function
➔ What it returns

Documenting Function Behaviour

double multiply(double a, double b)
{
 /* multiply two values together and return the result

double a: First number to multiply
 double a: Second number to multiply

 return: The value of the product of a and b
 */

 return a * b;
}

14

● Now you have learnt how to write your own functions, we can now
start using them in your cipher code to 'tidy things up' a bit

● For the next exercise, move your transliteration code from within the
'while' loop into a function called 'transformChar' that takes a char
and returns a string after applying the transliteration:

● After removing code from the 'while' loop, in its place you will need to
add a call to the 'transformChar' function and add the return value to
the 'inputText' string

● Your new function will have to be put before your main function
where it's referenced

Exercise - Start Using Functions

std::string transformChar(const char in_char)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

