Building and Modularizing mpags—-cipher
with CMake

* Mark Slater (based on slides from Ben Morgan)

THE UNIVERSITY OF UNIVERSITYOF

WA ]QN/IC K BIRMINGHAM



Developer

Workflow
v, Build and Test
$ g++ mpags-cipher.cpp -o mpags-cipher
S ./mpags-cipher
git add/commit - g

“Add CMake build”

. Edit Sources
Add Files



Building a C++ based Executable

#include <iostream> C 'I d C d Add't' I L'b

int main () Ompl e 0 e I |0na I S

{

// Read and print three

// floating point numbers )

std::cout << "Give 3 nums" << std::endl; e =

fl(}at dy b; c; .I(._ II# .

std::cin »> a >> b >> c; ' " _
.'*' - :_ iy

ztd::cout << "“Your gave... "; upﬁrﬁ‘;* g

sEdrooenst w8 g s P W B Iy o A el e ‘WPI n

L :
<< std::endl; "'#Z;I

return 0
Raw Code

}

Executable o



$ g++ -std=c++11 mpags-cipher.cpp -0 mpags-cipher
$ ./mpags-cipher

$ git add mpags-cipher.cpp

$ git commit -m “A change”

$ vim mpags-cipher.cpp

What if they have

different compilers and

need other flags?
What about system
specific features?

Is it really so awkward?

How to tell other
users what to do?

What happens when we
have more than one file to
compile?



Build Automation




g Visual Studio

Qt gmake

Tools for Build Automation



mpags-cipher.git

README . md A CM a k e
mpags-cipher.cpp
(MakelL1ists.txt M

[ Makef1il ej [mpﬂgs-cipher" : xcudEPrﬂjJ [mpugs—cipher . san

g Visual Studio

CMake - A “Metabuild” System



(opgcptergt ) opageaherbuld

{ README . md

i mpags-cipher.cpp ] i .
i C(MakelLists. txt | ooz Gl e
Makefile
| C(MakeCache. txt
r e aiam's .-‘-‘~~ ——— f cmake_1install. cmake
| mpags-cipher.DBG |  CMakeFi Les/

1$ cmake -DDEBUG=ON \
. ./mpags-cipher.git

CMake Workflow - Separation of Source and Build



Building mpags—-cipher with CMake

* In the following walkthrough, we'll bring in CMake to automate the build of mpags-cipher and
integrate it to our workflow. We'll look at the basic elements of the CMake scripting language
and how it helps automate things we've had to do manually so far like compiler selection and

flags.

* We'll look again at function definitions and declarations, in particular how these allow us to
divide code into separate header files declaring interfaces, and source files defining
implementations. With more files to deal with, and more compiler-dependent flags to handle,
CMake will be used to help manage these easily and portably.

* Of course, we'll continue to tracks changes using git and don't forget to update the README
with new instructions on how to build!



@9 O® < L]

» CMake » 3.3.2 Documentation »

Table Of Contents

Command-Line Tools
Interactive Dialogs
Reference Manuals
Release Notes

Index and Search

Next topic

cmake(1)

This Page

Show Source

Quick search

Enter search terms or a module,
class or function name.

Command-Line Tools

L ]
-
L ]

cmake(1)
ctest(1)
cpack(1)

Interactive Dialogs

L ]
-

cmake-gui(1)
ccmake(1)

Reference Manuals

a & 8 & & & & @& ® & ® ® @® 0

cmake-buildsystem(7)
cmake-commands(7)
cmake-compile-features(7)
cmake-developer(7)
cmake-generator-expressions(7)
cmake-generators(7)
cmake-language(7)
cmake-modules(7)
cmake-packages(7)
cmake-policies(7)
cmake-properties(7)
cmake-qt(7)
cmake-toolchains(7)
cmake-variables(7)

Release Notes

FPAllalia Falacaa AMlada -

Tools you'll need

cr

ACMake

h| SyntaxHighlight.hpp + (~) - VIM

18 };
11 #endif

| #ifndef SYNTAX_HIGHLIGHTING_EDITOR
2 #define SYNTAX_HIGHLIGHTING_EDITOR

4 class SyntaxHighlightingEditor {

public:
enum YourEditor {VIM, EMACS, KATE, GENIE};

void learn_features() const;
void be_productive() const;

byntaxHighlight. hpp[+]1Lcpp]

10



1: Getting CMake

S cmake —--version

EPSCO2PN49MFVH8 :mpags-cipher.git slatermw$ cmake --version
cmake version 3.9.4

(Make suite maintained and supported by Kitware (kitware.com/cmake).
EPSCO2PN49MFVH8 :mpags-cipher.git slatermw$




2: Getting Help With CMake

There’s plenty of documentation on the CMake website, and of courseman cmake will give a good overview. For
quick lookup of the commands, variables and properties that comprise CMake’s scripting language, it's hard to beat
CMake’'s command line help interface:

S cmake —--help-command project

EPSCO2PN49MFVH8 :mpags-cipher.git slatermw$ cmake --help-command project

project Useful Help Commands

Set a name, version, and enable languages for the entire project.

project(<PROJECT-NAME> [LANGUAGES] [<language-name>...])

project(<PROJECT-NAME> — - I
[VERSION <major>[.<minor>[.<patch>[.<tweak>]1]1] help Varlable NAME

[DESCRIPTION <project-description-string>] . .
[LANGUAGES <language-name>...]) Pnnt hEIp on Vanable

Sets the name of the project and stores the name in the —-help-property NAME
""PROJECT_NAME" " variable. Additionally this sets variables .
v PROJECT_SOURCE_DIR" . Print help on property

" “<PROJECT-NAME>_SOURCE_DIR™ © .
* *“PROJECT_BINARY_DIR' ", --help-<type>-list

" “<PROJECT-NAME>_BINARY_DIR™ " . .

List names of available

If “"VERSION ° 1is specified, given components must be non-negative integers.

If ""VERSION " 1is not specified, the default version is the empty string. < > mmand.v riable or
The ““VERSION' " option may not be used unless policy " ~(MP@@48" " is type (CO a d’ a

set to “NEW . property)

The "““project()” " command stores the version number and its components
in variables --help-commands

+ *\PROJECT_VERSION'®, List help for all commands
*“<PROJECT-NAME>_VERSION™ "
* *“PROJECT_VERSION_MAIOR" °,




3: The CMake Scripting Language

CMake scripts are written in its own scripting language. This is generally simple to use and has most of the flow
control and conditional statements familiar from C++ (and other languages). It is now generally well documented on
the CMake site, so refer to these through the course:

https://cmake.org/cmake/help/v3.2/manual/cmake-buildsystem.7.html
https://cmake.org/cmake/help/v3.2/manual/cmake-language.7.html

Notes

eee < m a? o & cmake.org N
|

CMake » 3.2.3 Documantation = previous | next | indec

Table Of Contents cmake-buildsystem(7)
i s Contents

The language is very simple so

» cmake-buildsystem(7)
o [niroduction

T we won't go into it in detail,
= Binary Library Types
z Yo e other than to refer you to the

o Build Specification and Usage Requirements
» Target Properties
= Transitive Usage Requirements
» Compatible Interface Properties
s Property Origin Debugging
» Build Specification with Generator Expressions
# [nclude Directories and Usage Requirements

linked documentation.

= Link Libraries and Generator Expressions
s Qutput Files
Directory-Scoped Commands

; It does have its idiosyncrasies,
o Pseudo Targets . . .
- but works well in its domain of

= Interface Libraries

describing software builds!

Introduction

Previous topic

A CMake-based buildsystem is organized as a set of high-level logical targets. Each target corresponds to an executable or librany, oris.a custom
target containing custom commands. Dependencies between the largets are expressed in the buildsystem to determine the build q_|
for regeneration in response to change. —




4: A First CMake Script for mpags-cipher

Starting with CMake is straightforward - we simply create a file named CMakel.ists. txt (it cannot have any
other name) in the root directory (e.g. mpags—-cipher. git) of the project. Written in CMake’s scripting
language, this is essentially another program that declares how we want to build our project. To begin with we
simply add three commands. The first two to check we're running a suitable version of CMake, and perform

minimal system setup for our project. The third sets an internal CMake variable to output more information when
we go to build.

Notes

(VERSION 3.2)
(MPAGSCipher VERSION 0.1.0)

You can supply more detailed

version numbers to
(CMAKE_VERBOSE_MAKEFILE ON) cmake_minimum_required if

you need specific versions.

Kitware provide a Version
Compatibility Matrix on their
wiki

You can choose the name

of the project as needed.

Use cmake —-help
-uuu:**-F1 CMakeLists.txt ALl L13 command for more info!

Auto-saving...done




5: Creating the Build Directory

As mentioned earlier, a good practice is to perform the build in a separate directory. Even though our current
CMake won't build anything yet, we'll get this directory set up first to illustrate the basic usage of Cmake.

Create a build directory for mpags-cipher outside of your repository. The easiest thing to do is create this directory
parallel to the repository as shown below (ignore the Documentation and Testing folders in the image!):

EPSCO2PN49MFVH8 :mpags-cipher.git slatermw$ tree -C .

F— CMakelists.txt NOteS

— LICENSE
— README .md
L— mpags-cipher.cpp

0 di tories, 4 fil " I I
EPSEgg;NZ;;E\SIHS:mp;ngcipher‘.git slatermw$ cd ../ Thls paraHEI bUlld StrUCture IS
EPSCO2PN49MFVH8 :mpags slatermw$ tree -C . Why we set up a two-level
— structure for the project and its
— CMakelists.txt I I - 've i
— LICENSE git repository - we've isolated
— README.md both the repo and build from
L— mpags-cipher.cpp .
| | | other files. You can create the
2 directories, 4 files
EPSC@2PN49MFVH8 :mpags slatermw$ build directory wherever you
want. The parallel creation

pattern is simply for
convenience.




6: Using CMake to Generate Makefiles

With the build directory created, we can now run CMake to generate the build scripts. On UNIX systems, CMake
generates Makefiles by default. To see the other build systems supported by CMake, see the “Generators” section
of the CMake documentation. To generate the Makefiles, simply run the cma ke command in your build directory,
and pass it the path to your “source directory’, i.e. the directory holding the main CMakeLists. txt file for the
project being built.

EPSCO2PN49MFVH8 :mpags slatermw$ 1s NOteS

EPSCO2PN49MFVH8 :mpags slatermw$ cd mpags-cipher.build/

EPSCO2PN49MFVH8 :mpags-cipher.build slatermw$ cmake ../mpags-cipher.git/

-- The C compiler identification is AppleClang 7.0.0.7000176

-- The CXX compiler identification is AppleClang 7.0.0.7000176

-- Check for working C compiler: /Applications/Xcode.app/Contents/Developer/Toolchains/XcodeDefa

ult.xctoolchain/usr/bin/cc You can supply the path asa
-- Check for working C compiler: /Applications/Xcode.app/Contents/Developer/Toolchains/XcodeDefa

ult.xctoolchain/usr/bin/cc —- works relative path from your build
-- Detecting C compiler ABI info

- Detecting C compiler ABI info - done directory to the source directory,

-- Detecting C compile features

-~ Detecting C compile features - done or as a full absolute path.
-- Check for working CXX compiler: /Applications/Xcode.app/Contents/Developer/Toolchains/XcodeDe

fault.xctoolchain/usr/bin/c++

-- Check for working CXX compiler: /Applications/Xcode.app/Contents/Developer/Toolchains/XcodeDe

fault.xctoolchain/usr/bin/c++ -- works

-- Detecting CXX compiler ABI info The OUtPUt shows CMake

Detecting CXX iler ABI info - d . D
nztzﬁtlﬂg CXX Egmﬁh?feawﬁzsc’ o CheCklng the avallablllty and

Detecting CXX compile features - done . :
Configuring done functionality of the C/C++
Generating done

-- Build files have beer.\ wr‘ittep to: /Users/slatermw/mpags/mpags-cipher.build Compilers- AS Well as the bUIld
EPSCO2PN49MFVH8 :mpags-cipher.build slatermw$ Scripts |t Wlll have aI.SO Created a

text file with the configuration
details in: CMakeCache. txt




/: Makefile

This is the script generated by CMake for use with the make build tool. It's a text file which you can view with a

pager like 1 es s, though we won't need to worry its syntax here.

To use the script, simply type ma ke when in the build directory - though it doesn't do much yet! The verbose
output (we set CMAKE VERBOSE MAKEFILE to ‘ON inthe CMakeList . txt)will helpin the next few
steps. You can also runmake help to see the list of “targets”. Try building each target using make

<targetname>

EPSC@2PN49MFVH8 :mpags-cipher.build slatermw$ make
/usr/local/Cellar/cmake/3.9.4_1/bin/cmake -H/Users/slatermw/mpags/mpags-cipher.git -B/Users/slat
ermw/mpags/mpags-cipher.build --check-build-system (MakeFiles/Makefile.cmake @
/usr/local/Cellar/cmake/3.9.4_1/bin/cmake -E cmake_progress_start /Users/slatermw/mpags/mpags-ci
pher.build/CMakeFiles /Users/slatermw/mpags/mpags-cipher.build/CMakeFiles/progress.marks
/Applications/Xcode.app/Contents/Developer/usr/bin/make -f (CMakeFiles/Makefile2 all
make[1]: Nothing to be done for “all'.
/usr/local/Cellar/cmake/3.9.4_1/bin/cmake -E cmake_progress_start /Users/slatermw/mpags/mpags-ci
pher.build/CMakeFiles @
EPSCO2PN49MFVH8 :mpags-cipher.build slatermw$ make help
The following are some of the valid targets for this Makefile:
. all (the default if no target is provided)
... clean
. depend
. rebuild_cache
... edit_cache
EPSCO2PN49MFVH8 :mpags-cipher.build slatermw$ make rebuild_cache
Running CMake to regenerate build system...
/usr/local/Cellar/cmake/3.9.4_1/bin/cmake -H/Users/slatermw/mpags/mpags-cipher.git -B/Users/slat
ermw/mpags/mpags-cipher.build
-- Configuring done
-- Generating done
-- Build files have been written to: /Users/slatermw/mpags/mpags-cipher.build
EPSC@2PN49MFVH8 :mpags-cipher.build slatermw$

Main Targets

all:

Build everything, the target built if
you just type make.

clean:
Remove all built files

rebuild cache:
Force rerun of CMake

edit cache:
Start up ccmake




8: Getting CMake to Build mpags-cipher

add executable (mpags-cipher mpags-cipher.cpp)

- Main (Make buildscript for mpags-cipher
Comments in a CMake Script are lines begining with a '#'

- Set (Make requirements then declare project
(VERSION 3.2)
(MPAGSCipher VERSION 0.1.0)

- When Makefiles are generated, output all command lines by default
Do this to begin with so it's easy to see what compiler command/flags
are used. This can also be done by removing the 'set' command and
running make as 'make VERBOSE=1".

(CMAKE_VERBOSE_MAKEFILE ON)

- Declare the build of mpags-cipher main program
(mpags-cipher mpags-cipher.cpp)

-uu-:**-F1 (MakelLists.txt All L15 (CMake)




9: Building mpags-cipher
Change back to your build directory (where you ran CMake before). If you already ran
cmake in here, simply type ma ke and you should find that CMake automatically

reruns, before trying to build mpags—-cipher. Be aware that it will most likely fail
- you'll find out how to fix this in the next slide!

EPSCO2PN49MFVHS8 :mpags-cipher.build slatermw$ make

/usr/local/Cellar/cmake/3.9.4_1/bin/cmake -H/Users/slatermw/mpags/mpags-cipher.git -B/Users/slat
ermw/mpags/mpags-cipher.build --check-build-system (MakeFiles/Makefile.cmake @
/usr/local/Cellar/cmake/3.9.4_1/bin/cmake -E cmake_progress_start /Users/slatermw/mpags/mpags-ci
pher.build/CMakeFiles /Users/slatermw/mpags/mpags-cipher.build/CMakeFiles/progress.marks
/Applications/Xcode.app/Contents/Developer/usr/bin/make -f CMakeFiles/Makefile2 all
/Applications/Xcode.app/Contents/Developer/usr/bin/make -f CMakeFiles/mpags-cipher.dir/build.mak
e (MakeFiles/mpags-cipher.dir/depend

cd /Users/slatermw/mpags/mpags-cipher.build & & /usr/local/Cellar/cmake/3.9.4_1/bin/cmake -E cmak
e_depends "Unix Makefiles" /Users/slatermw/mpags/mpags-cipher.git /Users/slatermw/mpags/mpags-ci
pher.git /Users/slatermw/mpags/mpags-cipher.build /Users/slatermw/mpags/mpags-cipher.build /User
s/slatermw/mpags/mpags-cipher.build/CMakeFiles/mpags-cipher.dir/DependInfo.cmake --color=
/Applications/Xcode.app/Contents/Developer/usr/bin/make -f CMakeFiles/mpags-cipher.dir/build.mak
e (MakeFiles/mpags-cipher.dir/build

[ 50%]
/Applications/Xcode.app/Contents/Developer/Toolchains/XcodeDefault.xctoolchain/usr/bin/c++ -S
td=gnu++11 -0 CMakeFiles/mpags-cipher.dir/mpags-cipher.cpp.o -c /Users/slatermw/mpags/mpags-ciph
er.git/mpags-cipher.cpp

[100%]

/usr/local/Cellar/cmake/3.9.4_1/bin/cmake -E cmake_link_script CMakeFiles/mpags-cipher.dir/link.
txt --verbose=1
/Applications/Xcode.app/Contents/Developer/Toolchains/XcodeDefault.xctoolchain/usr/bin/c++ -Wl
,-search_paths_first -Wl,-headerpad_max_install_names C(MakeFiles/mpags-cipher.dir/mpags-cipher.
cpp.o -0 mpags-cipher

[100%] Built target mpags-cipher

/usr/local/Cellar/cmake/3.9.4_1/bin/cmake -E cmake_progress_start /Users/slatermw/mpags/mpags-ci
pher.build/CMakeFiles @

EPSCO2PN49MFVH8 :mpags-cipher.build slatermw$

Notes

CMake generates build scripts
that track changes to your
CMake build scripts. Thus you
don't need to rerun CMake all
the time, just run make, and it'll

automatically run CMake for
you.

If you do need to start from
scratch you can simply remove
CmakeCache.txt and rerun
cmake, or just remove the build
directory.




10: Adding Compiler Flags for C++11

You may have found that this failed to compile. As mentioned last week, some compilers need to have a flag set to
enable the C++11 standard. We could add this in CMake by hand (and we'll see how to do this for other flags later),
but we'd have to hard code in knowledge of different compilers and which versions support different versions of
the C++ Standard. Instead, we're going to use an easier method, CMake Compile Features:

https://cmake.org/cmake/help/v3.2/manual/cmake-compile-features.7.html

ao8e8 < I En(} o Cmiki org

4 Chlaka » 3.2.3 Documantation »

Notes

Table Of Contents cmake-compile-features(7)
cmake-compila-faaturas] 7)
= IntroQucton mm
= Compile Fasiumn
» cmake-compile-features(7)
o Introcuchion
e Compile Feature Requirements
e Optional Compile Featuras

Not all compilers require flags to
select the C++ standard. The

Previous topic o Conditional Compilation Options

B Microsoft compiler is the main
Him;pt{,l Introduction

R A—— example here.
This Page Project source code may depend on, or be conditional on, the availability of certain features of the com,

- Compile Feature Requirements, Optional Compile Features and Conditional Compilation Options.

Quick search While features are typically specified in programming language standards, CMake provides a primary 1 . .
E the features, not the language standard that introduced the feature. Comp|le Featu res prOV|de an
—"

B ioraaenliiaems ore modia. The craxe_c_xsown_rearunss and owss_cxx_sxows_reatures Global properties contain all the features know easier and platform independent

TR T for the feature, The cwsz ¢ comriie rearores AN cxaxe cxx cospinz reaTvmxs variables contain all featur

regarcless of language standard or compile flags needed to use them. way to specify what we need the

Features known to CMake are named mostly following the same convention as the Clang feature test .
CMake using cxx_final and cxx_overrice instead of the single cxx_override_control used by Clang. Compller tO SU pport

Compile Feature Requirements

Compile feature requirements may be specified with the target compile festures() command. For e
compibar support for the cxx_consrespr foature.

add library(mylib requires constoxpr.cpp)



11: Compile Features For mpags-cipher

To declare the compile features we need for mpags-cipher, we use CMake's

target compile featurescommand. This takes the name of the “target” (program or library) a “scope”
flag and a (scoped) list of the compile features the target's sources use, and require compiler support for. Compile
features are simply strings describing the feature used, e.g. cxx auto type when the codeuses, e.g. auto
foo = 1;

After adding appropriate C++11 features and re-running ma ke, you'll see —std=c++11 added!

Try This

(VERSION 3.2)
(MPAGSCipher VERSION 0.1.0)

Set the variable
CMAKE CXX EXTENSTONS

(CMAKE _VERBOSE_MAKEFILE ON to OFF first to prevent vendor

extensions to C++11. Add compile
(mpags-cipher features for mpags-cipher -

PRIVATE cxx_auto_type cxx_range_for cxx_uniform_initialization reVieW the documentation tO

)
decide which ones you need.

(mpags-cipher mpags-cipher.cpp)

Use the PRIVATE “scope” flag for
the features as shown. We'll look

~uu-:---F1 (MakeLists.txt ALl L1 (CMake) at this in more detail later.

Loading /usr/local/share/cmake/editors/emacs/cmake-mode.el (source)...done




12: How Compile Features Help

We haven't had to concern ourselves with exactly which version of compiler we are using nor what parts of the C++
Standard it supports. With C++ moving to a shorter update cycle, this will become more important. For example,
add cxx binary literals tothe compile features of mpags-cipher and rebuild. You should see that
the —std flag has changed to that for the C++14 standard if your compiler supports it. Otherwise, you'll get an
error when CMake runs telling you that the feature is not known to the compiler, as shown below.

EPSCO2PN49MFVH8 :mpags-cipher.build slatermw$ make

/usr/local/Cellar/cmake/3.9.4_1/bin/cmake -H/Users/slatermw/mpags/mpags-cipher.git -B/Users/slat
ermw/mpags/mpags-cipher.build --check-build-system CMakeFiles/Makefile.cmake @
/usr/local/Cellar/cmake/3.9.4_1/bin/cmake -E cmake_progress_start /Users/slatermw/mpags/mpags-ci
pher.build/CMakeFiles /Users/slatermw/mpags/mpags-cipher.build/CMakeFiles/progress.marks
/Applications/Xcode.app/Contents/Developer/usr/bin/make -f CMakeFiles/Makefile2 all
/Applications/Xcode.app/Contents/Developer/usr/bin/make -f CMakeFiles/mpags-cipher.dir/build.mak
e (MakeFiles/mpags-cipher.dir/depend

cd /Users/slatermw/mpags/mpags-cipher.build && /usr/local/Cellar/cmake/3.9.4_1/bin/cmake -E cmak
e_depends "Unix Makefiles" /Users/slatermw/mpags/mpags-cipher.git /Users/slatermw/mpags/mpags-ci
pher.git /Users/slatermw/mpags/mpags-cipher.build /Users/slatermw/mpags/mpags-cipher.build /User
s/slatermw/mpags/mpags-cipher.build/CMakeFiles/mpags-cipher.dir/DependInfo.cmake --color=
/Applications/Xcode.app/Contents/Developer/usr/bin/make -f (CMakeFiles/mpags-cipher.dir/build.mak
e (MakeFiles/mpags-cipher.dir/build

[ 52%]
‘Applications/Xcode.app/Contents/Developer/Toolchains/XcodeDefault.xctoolchain/usr/bin/c++ -S
td=gnu++14 -0} CMakeFiles/mpags-cipher.dir/mpags-cipher.cpp.o -c /Users/slatermw/mpags/mpags-ciph
er.git/mpags-cipher.cpp

['190%]

/usr/T6cal/Cellar/cmake/3.9.4_1/bin/cmake -E cmake_link_script (MakeFiles/mpags-cipher.dir/link.
txt --verbose=1
/Applications/Xcode.app/Contents/Developer/Toolchains/XcodeDefault.xctoolchain/usr/bin/c++ -Wl
,-search_paths_first -Wl,-headerpad_max_install_names C(MakeFiles/mpags-cipher.dir/mpags-cipher.
Cpp.0 -0 mpags-cipher

[100%] Built target mpags-cipher

/usr/local/Cellar/cmake/3.9.4_1/bin/cmake -E cmake_progress_start /Users/slatermw/mpags/mpags-ci
pher.build/CMakeFiles @

EPSCO2PN49MFVH8 :mpags-cipher.build slatermw$

Notes

This is classic example of a build
system handling the details for
us!

Though other tools don't have
“compile features” directly, they
all provide a “try-compile”
pattern. This is used to exercise
the compiler and find out what

it can do. Its results can be used
to workaround issues or warn the
user as needed.




13: Adding Additional Compiler Flags

Compilers provide a vast range of flags, so CMake can't set all of them for us. You'll notice that additional warnings
like -Wa 11 that we want to use are not yet set. The default flags used by the C++ compiler can be changed by
setting the CMake variable CMAKE CXX FLAGS to a quoted string containing the flags we want to use.

Try This

(VERSION 3.2)
(MPAGSCipher VERSION 0.1.0)

Set CMAKE CXX FLAGSto

the list we've been using when

(CMAKE_VERBOSE_MAKEFILE ON) g s
compiling manually.

(mpags-cipher mpags-cipher.cpp)

COMAKE_CXX_EXTENSIONS OFF) Of course, check that the flags
are passed to the compiler by

(CMAKE_CXX_FLAGS "-Wall -Wextra -Werror -Wfatal-errors -Wshadow -pedantic") I’ebUIldIng Wlth make and

PRIVATE cxx_auto_type(rgz:?i;ﬁsgﬁigr' cxx_uniform_initialization rEViEWing the Compile

) commands!

-uu-:**-F1 (MakelLists.txt All L26 (CMake)




14: Setting the C++ Standard Directly

If you don't know what specific Compile Features you need to include but you do know that you need a specific standard, you
can also use:

set (CMAKE CXX STANDARD REQUIRED ON)
set (CMAKE CXX STANDARD 11)

to enforce that you need a particular standard and then specifying which one (C++ 11, 14, 17, etc.). We don't need this now but
we will need it later to specifically ask for the C++ 14 standard

Try This

(VERSION 3.2)
(MPAGSCipher VERSION 0.1.0)

Try setting the standard to
C++ 14 and check the
appropriate compiler flag
(CMAKE_CXX_STANDARD 14) has been added.

(CMAKE_VERBOSE_MAKEFILE ON)

(mpags-cipher mpags-cipher.cpp)

Make sure you add the
lines before any defined

(CMAKE_CXX_FLAGS "-Wall -Wextra -Werror -Wfatal-errors -Wshadow -pedantic") tiirgafatis!

(CMAKE_CXX_EXTENSIONS OFF)

(mpags-cipher
PRIVATE cxx_auto_type cxx_range_for cxx_uniform_initialization

) You can also set this for a

-uu-:---F1 (MakeLists.txt All L16 (CMake) F>Eirt|(:lj|£ir tEir!JEBt lJE;Ir]QJ
Wrote /Users/slatermw/MPAGS-Code/CMakeLists.txt v ESEET:__IDIfC)I)EEIft:§7'




15: Reviewing mpags-cipher
Whilst mpags-cipher is relatively simple, it's already over 150 lines long with three functions, t ransformChar,

processCommandLine and main. As we add further functionality like reading/writing files and the ciphers
themselves, this complexity will only grow.

Whilst functions will help (and objects later), managing changes to different bits of functionality in a single file will
get tricky. In the next few steps we'll see how can separate functionality into separate files to isolate them and
allow them to evolve separately.

#include <fstream> NOteS

#finclude <iostream>
#include <string>
#include <vector>

#include <cctype> This will be a very simple
stdi: exercise where you may argue
the separation isn't needed!

The core objectives are to see
how we can partition code up
between files, compile all the
out_text{""}; code into a single program, and
to illustrate the concepton a

out_text += std::toupper(in_char); interface.
}

(std::isalpha(in_char)) {

-uu-:---F1 mpags-cipher.cpp Top L6 (C++/1 Abbrev)
Wrote /Users/slatermw/mpags/mpags-cipher.git/mpags-cipher.cpp SdCSd




16: Function Definitions and Declarations

Before we can use a function in C++, it must be known to the compiler. You might have seen this already when using
std: : cout if you forgot to include the 1 ost ream header.

In your mpags—-cipher program, move the t ransformChar function you've implemented to the end of
the . cpp file so that the ma i n function is the first that appears in the file. Try recompiling - does it work?

#include <fstream>
#include <iostream>
#include <string>
#include <vector>

#include <cctype>

std:: <std::

& helpRequested,

& versionRequested,
std::string& inputFile,
std::string& outputFile,
std::string& cipher_key,

& encrypt)

processStatus(true);

std: :vector<std:: >i
nArgs {args.size()};

1 {1}; 1 < nArgs; ++1i) {

-uu-:**-F1 mpags-cipher.cpp Top L10 (C++/1 Abbrev)

Notes

At present we only have an
implementation, or
definition for
transformChar




17: No Declaration, No Go

You'll have found the compilation fails with the compiler reporting that t rans formChar is an “undeclared
identifier’ or " not declared in this scope’

This occurs because we've tried to use the function in main before the compiler has seen it.

We could fix this by moving the definition of transformChar back to before main, but instead we'll inform the
compiler about it by adding a function declaration for it before main

EPSCO2PN49MFVH8 :mpags-cipher.build slatermw$ make

/usr/local/Cellar/cmake/3.9.4_1/bin/cmake -H/Users/slatermw/mpags/mpags-cipher.git -B/Users/slat NOteS
ermw/mpags/mpags-cipher.build --check-build-system (MakeFiles/Makefile.cmake @
/usr/local/Cellar/cmake/3.9.4_1/bin/cmake -E cmake_progress_start /Users/slatermw/mpags/mpags-ci
pher.build/CMakeFiles /Users/slatermw/mpags/mpags-cipher.build/CMakeFiles/progress.marks
/Applications/Xcode.app/Contents/Developer/usr/bin/make -f (MakeFiles/Makefile2 all
/Applications/Xcode.app/Contents/Developer/usr/bin/make -f (MakeFiles/mpags-cipher.dir/build.mak :

e (MakeFiles/mpags-cipher.dir/depend YOU may S€€ the term funCtlon

cd /Users/slatermw/mpags/mpags-cipher.build & & /usr/local/Cellar/cmake/3.9.4_1/bin/cmake -E cmak :
e_depends "Unix Makefiles" /Users/slatermw/mpags/mpags-cipher.git /Users/slatermw/mpags/mpags-ci prOtOtype USEd InterChangeably

pher.git /Users/slatermw/mpags/mpags-cipher.build /Users/slatermw/mpags/mpags-cipher.build /User - - -
s/slatermw/mpags/mpags-cipher.build/CMakeFiles/mpags-cipher.dir/DependInfo.cmake --color= Wlth funCtlon dedaratlon' For C+
| /Applications/Xcode.app/Contents/Developer/usr/bin/make -f (CMakeFiles/mpags-cipher.dir/build.mak 1c 1 -

e (MakeFiles/mpags-cipher.dir/build . thlS IS O'k" bUt In Older StYl.e C
[ 33%] . . |
/Applications/Xcode.app/Contents/Developer/Toolchains/XcodeDefault.xctoolchain/usr/bin/c++ -W there IS a dlfference'

all -Wextra -Werror -Wfatal-errors -Wshadow -pedantic  -std=gnu++14 -0 CMakeFiles/mpags-cipher. H d l f .

| dir/mpags-cipher.cpp.o -c¢ /Users/slatermw/mpags/mpags-cipher.git/mpags-cipher.cpp ere, yOU Can deciare a UnCt|0n

/Users/slatermw/mpags/mpags-cipher.git/mpags-cipher.cpp:173:15: use of undeclared . o
" identifier 'transformChar’ without specifying the types of

inputText += transformChar(inputChar); the arguments A prototype iS a
1 error generated. .

| make[2]: *** [CMakeFiles/mpags-cipher.dir/mpags-cipher.cpp.o] Error 1 dedaration that indUdes the

[make[1]: *** [CMakeFiles/ -cipher.dir/all] E 2 .
noker e [all] Brvor 2 s e /et Errer number and type of its

EPSCO2PN49MFVH8 :mpags-cipher.build slatermw$
| arguments.




18: Declaring Functions

To declare a function, we add a statement that specifies its return type, name, and types of the arguments it takes,
omitting the body, i.e. the implementation or definition, of the function. The declaration tells the compiler about
the function interface, and promises that its definition will be found “somewhere else”. Add a declaration for
transformChar at the beginning of your main program. Check that you can now compile and run the

program o.k.

#include <fstream>
#include <iostream>
#include <string>
#include <vector>

#include <cctype>

std:: in);

std:: <std:: >& args,

& helpRequested,

& versionRequested,
std::string& inputFile,
std::string& outputFile,
std::string& cipher_key,

& encrypt)

processStatus(true);

std: :vector<std:: >
nArgs {args.size()};

-uu-:---F1 mpags-cipher.cpp Top L13 (C++/1 Abbrev)

Wrote /Users/slatermw/mpags/mpags-cipher.git/mpags-cipher.cpp

Notes

Function declarations are our
first concrete example of an
interface. The key point to grasp
is that an interface frees us from
worrying how a task is done, just
that it is done.

The implementation might be
intellectually interesting, but
knowledge of it is not needed to
use the interface.




19: Declarations Without Definitions

We've seen what happens when we try to use a function before declaring it, but what happens if its definition
(implementation) is missing?

Comment out the definition of t ransformChar but leave its declaration and usage in place. You should see an
error about a missing or undefined symbol. This illustrates that a declaration is just a hint to the compiler - it’s the
linking step of compilation that finds the actual implementation and connects it to where it’s used.

ermw/mpags/mpags-cipher.build --check-build-system (MakeFiles/Makefile.cmake @

-- Configuring done NOteS
-- Generating done

-- Build files have been written to: /Users/slatermw/mpags/mpags-cipher.build
/usr/local/Cellar/cmake/3.9.4_1/bin/cmake -E cmake_progress_start /Users/slatermw/mpags/mpags-ci
pher.build/CMakeFiles /Users/slatermw/mpags/mpags-cipher.build/CMakeFiles/progress.marks
/Applications/Xcode.app/Contents/Developer/usr/bin/make -f CMakeFiles/Makefile2 all
/Applications/Xcode.app/Contents/Developer/usr/bin/make -f (CMakeFiles/mpags-cipher.dir/build.mak I I

e (MakeFiles/mpags-cipher.dir/depend Llnk €rrors llke that Shown here
cd /Users/slatermw/mpags/mpags-cipher.build && /usr/local/Cellar/cmake/3.9.4_1/bin/cmake -E cmak it

e_depends "Unix Makefiles" /Users/slatermw/mpags/mpags-cipher.git /Users/slatermw/mpags/mpags-ci can be mUCh more dlfflCUlt tO
pher.git /Users/slatermw/mpags/mpags-cipher.build /Users/slatermw/mpags/mpags-cipher.build /User
s/slatermw/mpags/mpags-cipher.build/CMakeFiles/mpags-cipher.dir/DependInfo.cmake --color= rESOlVE as the €Irors are

/Applications/Xcode.app/Contents/Developer/usr/bin/make -f CMakeFiles/mpags-cipher.dir/build.mak Occur”ng at the maChIne COde

e CMakeFiles/mpags-cipher.dir/build level

[ 50%] '

/usr/local/Cellar/cmake/3.9.4_1/bin/cmake -E cmake_link_script CMakeFiles/mpags-cipher.dir/link.

txt --verbose=1

/Applications/Xcode.app/Contents/Developer/Toolchains/XcodeDefault.xctoolchain/usr/bin/c++ -Wal v . . -

1 -Wextra -Werror -Wfatal-errors -Wshadow -pedantic -W1,-search_paths_first -W1,-headerpad_max_i Generally, the mISSIHg SymbOl

nstall_names (MakeFiles/mpags-cipher.dir/mpags-cipher.cpp.o -0 mpags-cipher :

Undefined symbols for architecture x86_64: error is most common and
"transformChar(char)", referenced from: . .

_main in mpags-cipher.cpp.o simply means the linker has not
1d: symbol(s) not found for architecture x86_64 . :
clang: fatal error: linker command failed with exit code 1 (use -v to see invocation) had all nEEdEd flleS paSSEd fo It.
make[2]: *** [mpags-cipher] Error 1
make[1]: *** [(MakeFiles/mpags-cipher.dir/all] Error 2
make: *** [all] Error 2
EPSCO2PN49MFVH8 :mpags-cipher.build slatermw$




20: Splitting Up Source Code

As it's the linking step that takes care of resolving and connecting together use of functions (in this case) with the
actual implementation, we don't have to have all the source code for a program in a single file.

As shown in the diagram below we can split logical blocks of code into separate source files, compile these into
object files and finally link these together into the final program

[ mpags-cipher.cpp ] { mpags-cipher.cpp ] NOteS
Compile Compile [ TransformChar. cpp J weh(l:l::\ti?rgsa;r?evgzgrl?rﬂevé?;e,
hundreds, if not thousands, of
functions.

[ Mpags-cipher.o ] [ Mpags-cipher.o ] Compile Isolating functionality into
separate files also helps to
localise changes to that file only.

Link [ TransformChar.o J That leads to cleaner commits
. and minimises the potential for
Link | errors.
[ mpags-cipher.exe ] [ mpags-cipher.exe ]




21: Compiling transformChar Separately

To begin modularising mpags-cipher, we'll move the definition of t ransformChar into a separate file.

Create a new file named TransformChar . cpp and a subdirectory called MPAGSCipher in your working
copy of mpags—-cipher. Move your implementation of t ransformChar frommpags-cipher.cpp

into this file, but leave the declarationin mpags-cipher. cpp.

EPSCO2PN49MFVH8 :mpags-cipher.git slatermw$ tree -C . NOteS

— CMakelLists.txt
— LICENSE

I_
I L— TransformChar.cpp

— README.r.nd . . -
_— mpags-cipher. cpp Modaularisation is a general term
1 directory, 5 files used here to mean “splitting up

EPSCO2PN49MFVHS8 :mpags-cipher.git slatermw$ _ .
into coherent elements’.




22: Compiling transformChar Separately

If you try and recompile mpags—-cipher at this point, you'll see that TransformChar . cpp isn't compiled
and that you get the “missing symbol” error from before.

We need to tell CMake about the new file, so open CMakelists.txt atthe top level of your mpags-cipher
working copy, and add MPAGSCipher/TransformChar . cpp to the source file list in the

add executable () call formpags-cipher. Try recompiling - what happens?

Notes

(VERSION 3.2)
(MPAGSCipher VERSION 0.1.0)

We must list the file with its path
relative to the

(CMAKE_VERBOSE_MAKEFILE ON) CMakelLists.txt inwhich
itis listed.

(mpags-cipher
mpags-cipher.cpp
MPAGSCipher/TransformChar.cpp
))

(CMAKE_CXX_EXTENSIONS OFF)

(CMAKE_CXX_FLAGS "-Wall -Wextra -Werror -Wfatal-errors -Wshadow -pedantic")

(mpags-cipher
PRIVATE cxx_auto_type cxx_range_for cxx_uniform_initialization cxx_binary_literals

)

-uu-:---F1 (MakelLists.txt All L1 (CMake)
Loading /usr/local/share/cmake/editors/emacs/cmake-mode.el (source)...done




23: #include With Separate Sources

Each source file is compiled in isolation, so each file must have declarations available for all objects and functions it
uses. In the case of TransformChar. cpp,ituses std: : st ring and functions from cctype. If you
didn't # include the headers for these in it, you're likely to see errors like that shown below when it gets

compiled.
Resolve errors in the compilation of TransformChar . cpp, by adding appropriate includes

EPSCQ2PN49MFVHS8 :mpags-cipher.build slatermw$ make
/usr/local/Cellar/cmake/3.9.4_1/bin/cmake -H/Users/slatermw/mpags/mpags-cipher.git -B/Users/slat OteS

ermw/mpags/mpags-cipher.build --check-build-system CMakeFiles/Makefile.cmake @
/usr/local/Cellar/cmake/3.9.4_1/bin/cmake -E cmake_progress_start /Users/slatermw/mpags/mpags-ci
pher.build/CMakeFiles /Users/slatermw/mpags/mpags-cipher.build/(MakeFiles/progress.marks
/Applications/Xcode.app/Contents/Developer/usr/bin/make -f CMakeFiles/Makefile2 all
/Applications/Xcode.app/Contents/Developer/usr/bin/make -f (MakeFiles/mpags-cipher.dir/build.mak f
e (MakeFiles/mpags-cipher.dir/depend I

cd /Users/slatermw/mpags/mpags-cipher.build && /usr/local/Cellar/cmake/3.9.4_1/bin/cmake -E cmak I you are Seelng any Other
e_depends "Unix Makefiles" /Users/slatermw/mpags/mpags-cipher.git /Users/slatermw/mpags/mpags-ci rror rn i'\

pher.git /Users/slatermw/mpags/mpags-cipher.build /Users/slatermw/mpags/mpags-cipher.build /User erro S, Y Ot see g
s/slatermw/mpags/mpags-cipher.build/CMakeFiles/mpags-cipher.dir/DependInfo.cmake --color= jjlféiflESifC)IfTﬂ(:llEi]f (:IDID

/Applications/Xcode.app/Contents/Developer/usr/bin/make -f (MakeFiles/mpags-cipher.dir/build.mak compiled at all Check w|th us!
e (MakeFiles/mpags-cipher.dir/build !
[ 33%]
/Applications/Xcode.app/Contents/Developer/Toolchains/XcodeDefault.xctoolchain/usr/bin/c++ -W
all -Wextra -Werror -Wfatal-errors -Wshadow -pedantic  -std=gnu++14 -o (MakeFiles/mpags-cipher.
dir/MPAGSCipher/TransformChar.cpp.o -c /Users/slatermw/mpags/mpags-cipher.git/MPAGSCipher/Transf
ormChar.cpp
/Users/slatermw/mpags/mpags-cipher.git/MPAGSCipher/TransformChar.cpp:7:1: use of
undeclared identifier 'std'
std::string transformChar(const char in_char)

1 error generated.

make[2]: *** [CMakeFiles/mpags-cipher.dir/MPAGSCipher/TransformChar.cpp.o] Error 1
make[1]: *** [CMakeFiles/mpags-cipher.dir/all] Error 2

make: *** [all] Error 2

EPSCO2PN49MFVH8 :mpags-cipher.build slatermw$




24: A Header for TransformChar

Touse transformChar inmpags—-cipher. cpp we still have to remember to add the exact declaration
forit. Remembering that # include <header> verbatim includes the contents of the referenced file, we can
instead move the declaration to a header file and # include that.

Create a new file named TransformChar . hpp under the MPAGSCipher subdirectory and move the
declaration for t ransformChar into it from mpags-cipher. cpp.

#include <string>
Notes

std::

Remember that if separate
source files used
transformChar, they
would each have to write out the
declaration by hand. A header
saves this potential source of
error.

Note the inclusion of the string
header. The interface of
transformChar uses this,
so we need to include it.

-uuu:---F1 TransformChar.hpp All L5 (C++/1 Abbrev)
Wrote /Users/slatermw/mpags/mpags-cipher.git/MPAGSCipher/TransformChar.hpp




25: Include Guards

The C++ Standard states that there can be no more than one definition in any translation unit (source file after all
#includes are expanded). What this means is that in general we should never #include aheader more
than once. As this is impossible to keep track of manually, we can instead use the C++ Preprocessor to only compile
the code if a symbol isn't defined.

Enclose the code of TransformChar.hppin #ifndef/#define/#endif block as shown below
and try recompiling.

#ifndef MPAGSCIPHER_TRANSFORMCHAR_HPP

#define MPAGSCIPHER_TRANSFORMCHAR_HPP N Otes

#include <string>

std::

All the guard does is prevent the
code being included into the
same translation unit more than
one.

ftendif

Note that the symbol of the
#def ine must be unique.
PROJECT HEADER HPP IS
usually sufficient, though some
add long random hashes as well!

-uuu:---F1 TransformChar.hpp All L9 (C++/1 Abbrev)
Wrote /Users/slatermw/mpags/mpags-cipher.git/MPAGSCipher/TransformChar.hpp



http://en.wikipedia.org/wiki/One_Definition_Rule

26: #1include For TransformChar.hpp

To ensure both mpags-cipher.cppand TransformChar.cpp can see the declaration, add the line

#include "TransformChar.hpp" tothe top of both files. We use quotes rather than angle brackets
as this header is internal to our project rather than external. Try recompiling - what happens?

#include <fstream> NOteS

#include <iostream>
#include <string>
#include <vector>

#include "TransformChar.hpp" Though the inClUSiOn Of
rgume td TransformChar. hpp !n
& helpRequested, TransformChar.cppls

& versionRequested,

std::string& inputFile, not strictly necessary, it ensures
std:: & outputFile, .
std::stringk cipher_key, consistency between the

& encrypt) . . e
declaration and definition.

processStatus(true); The use Of quotes in
std: :vector<std:: 19> . #finclude Changes the
iras Largs. sizeOk; default locations the compiler

uses to search for headers.
1 {1}; 1 < nArgs; ++1) {

-uu-:---F1 mpags-cipher.cpp Top L9 (C++/1 Abbrev)
Wrote /Users/slatermw/mpags/mpags-cipher.git/mpags-cipher.cpp




27: Searching for Header Files

When you recompiled, you encountered the error shown below - the new TransformChar . hpp file wasn't
found. Compilers only search for header files in a limited set of paths, so when supplying our own headers (or using
any others outside the default locations) we need to inform the compiler about these paths.

We'll go back to CMake to set these paths up.

EPSCO2PN49MFVH8 :mpags-cipher.build slatermw$ make

/usr/local/Cellar/cmake/3.9.4_1/bin/cmake -H/Users/slatermw/mpags/mpags-cipher.git -B/Users/slat NOteS
ermw/mpags/mpags-cipher.build --check-build-system (MakeFiles/Makefile.cmake @
/usr/local/Cellar/cmake/3.9.4_1/bin/cmake -E cmake_progress_start /Users/slatermw/mpags/mpags-ci
pher.build/CMakeFiles /Users/slatermw/mpags/mpags-cipher.build/CMakeFiles/progress.marks
/Applications/Xcode.app/Contents/Developer/usr/bin/make -f CMakeFiles/Makefile2 all
/Applications/Xcode.app/Contents/Developer/usr/bin/make -f CMakeFiles/mpags-cipher.dir/build.mak

e (MakeFiles/mpags-cipher.dir/depend I I
cd /Users/slatermw/mpags/mpags-cipher.build && /usr/local/Cellar/cmake/3.9.4_1/bin/cmake -E cmak We COUld ImmedlatEIy rESOlve

e_depends "Unix Makefiles" /Users/slatermw/mpags/mpags-cipher.git /Users/slatermw/mpags/mpags-ci ! !
pher.git /Users/slatermw/mpags/mpags-cipher.build /Users/slatermw/mpags/mpags-cipher.build /User th|S, fOl’ the GNU Compller, by
s/slatermw/mpags/mpags-cipher.build/CMakeFiles/mpags-cipher.dir/DependInfo.cmake --color= changing the inclusion to

/Applica?ions/Xcode . c_lpp/Con’Fents(Developer'/us r/bin/make -f CMakeFiles/mpags-cipher.dir/build.mak # l nc l ude

e (MakeFiles/mpags-cipher.dir/build “ .

EAls;ls;glqications/Xcode . apP/Contents/Developer‘/ToolchaiI:\s/XcodeDeFault . xctoolchain{usr'/bin/c++_ -W MPAG S C lphi = / Ir S f =
Cropassover -0 iserytavermseonnsvass-coner arceouss-comer o0 7o I S CHEESHERE
/User‘sﬁ}:t:;lmgz:gs/mpags-c1pher-.g1t/mpags-c1pher.cpp:8:10: "TransformChar.hpp' ThlS IS due to hOW GNU looks up

#include "TransfornChar.hpp” headers. Other compilers may or

1 error generated. :
make[2]: *** [CMakeFiles/mpags-cipher.dir/mpags-cipher.cpp.o] Error 1 maY nOt dO thlS, SO wWé Want tO

make[1]: *** [CMakeFiles/mpags-cipher.dir/all] Error 2 . .
e ik [all] ey 5"/ MPags=CtP . be more explicit by using CMake.
EPSCO2PN49MFVH8 :mpags-cipher.build slatermw$




28: CMake and Header Search Paths

To add search paths for the compiler, we use CMake's target include directories command, which
takes a target name and a (scoped) list to directories in which the compiler should search for headers when
compiling that target’s sources (which we specified earlier in add_executable).

Add target include directories for mpags-cipher as shown below. Use PRIVATE scope, and the
relative path from the CMakeLists. txt file to the location of TransformChar. hpp

Notes

(VERSION 3.2)
(MPAGSCipher VERSION 0.1.0)

We've used the PRIVATE scope
again, because no other build
step needs to know about these

(CMAKE_VERBOSE_MAKEFILE ON) dlrectorles

(CMAKE_CXX_EXTENSIONS OFF)

We've also added the header to
the list of sources in
(mpags-cipher add executable toensure

mpags-cipher.cpp

MPAGSCipher/T formChar. " 1 - . . .
MPAGSCipher/TransformChar.. hpp it's visible in IDE projects. This is

) not related to the header search
(mpags-cipher path.

(CMAKE_CXX_FLAGS "-Wall -Wextra -Werror -Wfatal-errors -Wshadow -pedantic")

PRIVATE MPAGSCipher

)
-uu-:**-F1 C(MakelLists.txt Top L18 (CMake)




29: CMake and Header Search Paths

Once you've edited CMakeLists. txt, rebuild and resolve any errors.

With a successful build, you should see that an extra option has been added to the compilation commands. For

GNU and Clang compilers at least, this takes the form

-I/path/to/your/working/copy/MPAGSCipher. The -I<dir> option tells these compilers to

add «dir to the list of directories under which to search for headers,

EPSCO2PN49MFVH8 :mpags-cipher.build slatermw$ make

/usr/local/Cellar/cmake/3.9.4_1/bin/cmake -H/Users/slatermw/mpags/mpags-cipher.git -B/Users/slat
ermw/mpags/mpags-cipher.build --check-build-system (MakeFiles/Makefile.cmake @
/usr/local/Cellar/cmake/3.9.4_1/bin/cmake -E cmake_progress_start /Users/slatermw/mpags/mpags-ci
pher.build/CMakeFiles /Users/slatermw/mpags/mpags-cipher.build/CMakeFiles/progress.marks
/Applications/Xcode.app/Contents/Developer/usr/bin/make -f (MakeFiles/Makefile2 all
/Applications/Xcode.app/Contents/Developer/usr/bin/make -f (MakeFiles/mpags-cipher.dir/build.mak
e (MakeFiles/mpags-cipher.dir/depend

cd /Users/slatermw/mpags/mpags-cipher.build && /usr/local/Cellar/cmake/3.9.4_1/bin/cmake -E cmak
e_depends "Unix Makefiles" /Users/slatermw/mpags/mpags-cipher.git /Users/slatermw/mpags/mpags-ci
pher.git /Users/slatermw/mpags/mpags-cipher.build /Users/slatermw/mpags/mpags-cipher.build /User
s/slatermw/mpags/mpags-cipher.build/CMakeFiles/mpags-cipher.dir/DependInfo.cmake --color=

/Applications/Xcode.app/Contents/Developer/usr/bin/make -f CMakeFiles/mpags-cipher.dir/build.mak

e (MakeFiles/mpags-cipher.dir/build

[ 33%]

/Applications/Xcode.app/Contents/Developer/Toolchains/XcodeDefault.xctoolchain/usr/bin/c++ -1/

Users/slatermw/mpags/mpags-cipher.git/MPAGSCipher -Wall -Wextra -Werror -Wfatal-errors -Wshadow
-pedantic  -std=c++14 -0 (MakeFiles/mpags-cipher.dir/MPAGSCipher/TransformChar.cpp.o -c¢ /Users

/slatermw/mpags/mpags-cipher.git/MPAGSCipher/TransformChar.cpp

[ 66%]

/usr/local/Cellar/cmake/3.9.4_1/bin/cmake -E cmake_link_script CMakeFiles/mpags-cipher.dir/link.

txt --verbose=1

/Applications/Xcode.app/Contents/Developer/Toolchains/XcodeDefault.xctoolchain/usr/bin/c++ -Wal
1 -Wextra -Werror -Wfatal-errors -Wshadow -pedantic -Wl,-search_paths_first -Wl,-headerpad_max_i
nstall_names (MakeFiles/mpags-cipher.dir/mpags-cipher.cpp.o C(MakeFiles/mpags-cipher.dir/MPAGSCi
pher/TransformChar.cpp.o -0 mpags-cipher

[100%] Built target mpags-cipher

/usr/local/Cellar/cmake/3.9.4_1/bin/cmake -E cmake_progress_start /Users/slatermw/mpags/mpags-ci
pher .build/CMakeFiles @

EPSCO2PN49MFVH8 :mpags-cipher.build slatermw$

Notes

By using CMake, we don't have
to worry about how different
compilers handle include paths.
We just tell CMake where the
compiler should search and it
handles adding the appropriate
flags for the compiler in use.




30: Building mpags-cipher Fast

So far, each source file is compiled separately in sequence. However, each compilation is independent with only
the linker needing all the object files at the end. Build tools are aware of this, so usually allow compilation in

parallel (via extra cores/threads) to speed things up

With make, simply use the -jN argument, with N being the number of parallel “jobs”

S make —-j2

pher.build/CMakeFiles /Users/slatermw/mpags/mpags-cipher.build/CMakeFiles/progress.marks

/Applications/Xcode.app/Contents/Developer/usr/bin/make -f (MakeFiles/Makefile2 all

/Applications/Xcode.app/Contents/Developer/usr/bin/make -f (MakeFiles/mpags-cipher.dir/build.mak

e (MakeFiles/mpags-cipher.dir/depend

cd /Users/slatermw/mpags/mpags-cipher.build && /usr/local/Cellar/cmake/3.9.4_1/bin/cmake -E cmak

e_depends "Unix Makefiles" /Users/slatermw/mpags/mpags-cipher.git /Users/slatermw/mpags/mpags-ci

pher.git /Users/slatermw/mpags/mpags-cipher.build /Users/slatermw/mpags/mpags-cipher.build /User

s/slatermw/mpags/mpags-cipher.build/CMakeFiles/mpags-cipher.dir/DependInfo.cmake --color=

/Applications/Xcode.app/Contents/Developer/usr/bin/make -f CMakeFiles/mpags-cipher.dir/build.mak

e (MakeFiles/mpags-cipher.dir/build

[ 66%]

[ 66%]

/Applications/Xcode.app/Contents/Developer/Toolchains/XcodeDefault.xctoolchain/usr/bin/c++ -1/

Users/slatermw/mpags/mpags-cipher.git/MPAGSCipher -Wall -Wextra -Werror -Wfatal-errors -Wshadow
-pedantic  -std=c++14 -0 (MakeFiles/mpags-cipher.dir/MPAGSCipher/TransformChar.cpp.o -c /Users

/slatermw/mpags/mpags-cipher.git/MPAGSCipher/TransformChar.cpp

/Applications/Xcode.app/Contents/Developer/Toolchains/XcodeDefault.xctoolchain/usr/bin/c++ -1/

Users/slatermw/mpags/mpags-cipher.git/MPAGSCipher -Wall -Wextra -Werror -Wfatal-errors -Wshadow
-pedantic  -std=c++14 -o (MakeFiles/mpags-cipher.dir/mpags-cipher.cpp.o -c /Users/slatermw/mpa

gs/mpags-cipher.git/mpags-cipher.cpp

[100%]

/usr/local/Cellar/cmake/3.9.4_1/bin/cmake -E cmake_link_script CMakeFiles/mpags-cipher.dir/link.

txt --verbose=1

/Applications/Xcode.app/Contents/Developer/Toolchains/XcodeDefault.xctoolchain/usr/bin/c++ -Wal
1 -Wextra -Werror -Wfatal-errors -Wshadow -pedantic -Wl,-search_paths_first -Wl,-headerpad_max_i
nstall_names CMakeFiles/mpags-cipher.dir/mpags-cipher.cpp.o (MakeFiles/mpags-cipher.dir/MPAGSCi
pher/TransformChar.cpp.o -0 mpags-cipher

[100%] Built target mpags-cipher

/usr/local/Cellar/cmake/3.9.4_1/bin/cmake -E cmake_progress_start /Users/slatermw/mpags/mpags-ci
pher.build/CMakeFiles @

EPSC@2PN49MFVH8 :mpags-cipher.build slatermw$

Notes

Generally, setting N to the
number of cores is sufficient,
though you should be aware of
resource limitations on multiuser
machines.

Other build tools have similar
options, or may even enable
parallel builds by default (e.g.
ninja)




31: Compiling processCommandLine Separately

You now know everything required to continue out 'modularisation’ of mpags-cipher by splitting
the processCommandLine function out into a separate file just like you did with
transformChar. Do this now, remembering to add include guards, to update CMakeLists.txt

and commit to github when you're happy!

EPSCO2PN49MFVH8 :mpags-cipher.git slatermw$ tree -C . NOteS

F— CMakelists.txt

— LICENSE

I_

I F— TransformChar.cpp
I L— TransformChar.hpp

T mrcoe-cioher. cpp If you have any problems with
this, just let us know!

1 directory, 6 files
EPSCO2PN49MFVH8 : mpags-cipher.git slatermw$




Walkthrough Summary

This has been a very rapid introduction to CMake, but in the process we ve got mpags-cipher building with all the
correct flags, and begun the task of separating code into headers and sources based on functionality. Whilst this is

quite a bit for such a simple project, it's been straightforward and we'll see the benefits this setup gives in future
weeks.

Though we've used CMake as our build tool, the same techniques and use cases apply to other systems like
Autotools. The bottom line is always use a good build system!

e Further Reading

F— CXX.includecache
— DependInfo.cmake
I_

I L— TransformChar.cpp.o

— build.make |l

— cmake_clean.cmake i
— depend.internal g

— depend.make
— flags.make .
T et CMake Documentation
— mpags-cipher.cpp.o
L— progress.make
L— progress.marks
Makefile
cmake_install.cmake

LICENSE

F— TransformChar.cpp
L— TransformChar.hpp
F— README.md
— mpags-cipher.cpp

I_

I_

|

— CMakelists.txt
I_

 —

I

I

12 directories, 40 files Datar Crith
EPSCO2PN49MFVH8 :mpags slatermw$ Felel olliiul




	Slide 1
	Slide 2
	Building a C++ based Executable
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Modularizing mpags-cipher
	Slide 10
	2: How Many Lines?
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	24: Reviewing mpags-cipher
	25: Function Definitions and Declarations
	26: No Declaration, No Go
	27: Declaring Functions
	28: Declarations Without Definitions
	29: Splitting Up Source Code
	30: Compiling transformChar Separately
	31: Compiling transformChar Separately
	32: #include With Separate Sources
	33: A Header for TransformChar
	34: Include Guards
	35: #include For TransformChar.hpp
	36: Searching for Header Files
	37: CMake and Header Search Paths
	38: CMake and Header Search Paths
	39: Building mpags-cipher Fast
	Slide 41
	Slide 42

