
1

Building and Modularizing mpags-cipher
with CMake
• Mark Slater (based on slides from Ben Morgan)

2

Edit Sources
Add Files

git add/commit
“Add CMake build”

Build and Test
$ g++ mpags-cipher.cpp -o mpags-cipher
$./mpags-cipher

Developer
Workflow

3

Building a C++ based Executable

4Is it really so awkward?

$ g++ -std=c++11 mpags-cipher.cpp -o mpags-cipher
$./mpags-cipher
$ git add mpags-cipher.cpp
$ git commit -m “A change”
$ vim mpags-cipher.cpp
$ g++ mpags-cipher.cpp -o mpags-cipher
$./mpags-cipher
$ git add mpags-cipher.cpp
$ git commit -m “More changes”
$ vim mpags-cipher.cpp
$ g++ mpags-cipher.cpp -o mpags-cipher
$./mpags-cipher
$ git add mpags-cipher.cpp
$ git commit -m “Yet more changes”
$ vim mpags-cipher.cpp
...

What if they have
different compilers and
need other flags?

How to tell other
users what to do?

What happens when we
have more than one file to
compile?

What about system
specific features?

5

Build Automation
<<configure>>

Find needed tools
Adapt code for system
Generate build script

<<build>>
Compile code
Link binary
Test binary

<<install>>
Install binary on system
Create installer for other
systems

6Tools for Build Automation

7CMake - A “Metabuild” System

8CMake Workflow - Separation of Source and Build

9

• In the following walkthrough, we’ll bring in CMake to automate the build of mpags-cipher and
integrate it to our workflow. We’ll look at the basic elements of the CMake scripting language
and how it helps automate things we’ve had to do manually so far like compiler selection and
flags.

• We’ll look again at function definitions and declarations, in particular how these allow us to
divide code into separate header files declaring interfaces, and source files defining
implementations. With more files to deal with, and more compiler-dependent flags to handle,
CMake will be used to help manage these easily and portably.

• Of course, we’ll continue to tracks changes using git and don’t forget to update the README
with new instructions on how to build!

Building mpags-cipher with CMake

10Tools you’ll need

11

If the version displayed isn’t
3.2.SOMETHING or higher then
you’ll need to install cmake – let
us know if this is the case!

If you see “command not found”
or similar, then there is no
CMake installed on the system,
so you’ll also need to install it.

Notes

1: Getting CMake
To get the best support for C++11, we’re going to use CMake 3.2 or newer. As this is a relatively recent version, your
system (if it’s a laptop – the desktops are up to date) may not have it installed. To check this, open a terminal and
run:

$ cmake --version

12

--help-variable NAME
Print help on variable
--help-property NAME
Print help on property
--help-<type>-list
List names of available
<type> (command,variable or
property)
--help-commands
List help for all commands

Useful Help Commands

2: Getting Help With CMake
There’s plenty of documentation on the CMake website, and of course man cmake will give a good overview. For
quick lookup of the commands, variables and properties that comprise CMake’s scripting language, it’s hard to beat
CMake’s command line help interface:

$ cmake --help-command project

13

The language is very simple so
we won’t go into it in detail,
other than to refer you to the
linked documentation.

It does have its idiosyncrasies,
but works well in its domain of
describing software builds!

3: The CMake Scripting Language
CMake scripts are written in its own scripting language. This is generally simple to use and has most of the flow
control and conditional statements familiar from C++ (and other languages). It is now generally well documented on
the CMake site, so refer to these through the course:

https://cmake.org/cmake/help/v3.2/manual/cmake-buildsystem.7.html
https://cmake.org/cmake/help/v3.2/manual/cmake-language.7.html

Notes

14

You can supply more detailed
version numbers to
cmake_minimum_required if
you need specific versions.
Kitware provide a Version
Compatibility Matrix on their
wiki
You can choose the name
of the project as needed.
Use cmake –-help
command for more info!

4: A First CMake Script for mpags-cipher
Starting with CMake is straightforward - we simply create a file named CMakeLists.txt (it cannot have any
other name) in the root directory (e.g. mpags-cipher.git) of the project. Written in CMake’s scripting
language, this is essentially another program that declares how we want to build our project. To begin with we
simply add three commands. The first two to check we’re running a suitable version of CMake, and perform
minimal system setup for our project. The third sets an internal CMake variable to output more information when
we go to build.

Notes

15

This parallel build structure is
why we set up a two-level
structure for the project and its
git repository – we’ve isolated
both the repo and build from
other files. You can create the
build directory wherever you
want. The parallel creation
pattern is simply for
convenience.

5: Creating the Build Directory
As mentioned earlier, a good practice is to perform the build in a separate directory. Even though our current
CMake won’t build anything yet, we’ll get this directory set up first to illustrate the basic usage of Cmake.

Create a build directory for mpags-cipher outside of your repository. The easiest thing to do is create this directory
parallel to the repository as shown below (ignore the Documentation and Testing folders in the image!):

Notes

16

You can supply the path as a
relative path from your build
directory to the source directory,
or as a full absolute path.

The output shows CMake
checking the availability and
functionality of the C/C++
compilers. As well as the build
scripts it will have also created a
text file with the configuration
details in: CMakeCache.txt

6: Using CMake to Generate Makefiles
With the build directory created, we can now run CMake to generate the build scripts. On UNIX systems, CMake
generates Makefiles by default. To see the other build systems supported by CMake, see the “Generators” section
of the CMake documentation. To generate the Makefiles, simply run the cmake command in your build directory,
and pass it the path to your “source directory”, i.e. the directory holding the main CMakeLists.txt file for the
project being built.

Notes

17

all:

Build everything, the target built if
you just type make.

clean:

Remove all built files

rebuild_cache:

Force rerun of CMake

edit_cache:

Start up ccmake

7: Makefile
This is the script generated by CMake for use with the make build tool. It’s a text file which you can view with a
pager like less, though we won’t need to worry its syntax here.
To use the script, simply type make when in the build directory - though it doesn’t do much yet! The verbose
output (we set CMAKE_VERBOSE_MAKEFILE to ‘ON’ in the CMakeList.txt) will help in the next few
steps. You can also run make help to see the list of “targets”. Try building each target using make
<targetname>

Main Targets

18

add_executable considers
all relative paths passed to it as
relative to the location of the
CMake script it is called in.

After saving the file, don’t
add/commit it with git yet
because we need to test it!

8: Getting CMake to Build mpags-cipher
To compile and link an executable in CMake, we use its add_executable command. This takes the name you
want the program to have followed by a space separated list of all the sources that need to be compiled to create
the program. Currently, we only have one source, so all we need to add to our CMake script is the single line

add_executable(mpags-cipher mpags-cipher.cpp)

Notes

19

CMake generates build scripts
that track changes to your
CMake build scripts. Thus you
don’t need to rerun CMake all
the time, just run make, and it’ll
automatically run CMake for
you.
If you do need to start from
scratch you can simply remove
CmakeCache.txt and rerun
cmake, or just remove the build
directory.

9: Building mpags-cipher
Change back to your build directory (where you ran CMake before). If you already ran
cmake in here, simply type make and you should find that CMake automatically
reruns, before trying to build mpags-cipher. Be aware that it will most likely fail
– you'll find out how to fix this in the next slide!

Notes

20

Not all compilers require flags to
select the C++ standard. The
Microsoft compiler is the main
example here.

Compile Features provide an
easier and platform independent
way to specify what we need the
compiler to support

10: Adding Compiler Flags for C++11
You may have found that this failed to compile. As mentioned last week, some compilers need to have a flag set to
enable the C++11 standard. We could add this in CMake by hand (and we’ll see how to do this for other flags later),
but we’d have to hard code in knowledge of different compilers and which versions support different versions of
the C++ Standard. Instead, we’re going to use an easier method, CMake Compile Features:

 https://cmake.org/cmake/help/v3.2/manual/cmake-compile-features.7.html

Notes

21

Set the variable
CMAKE_CXX_EXTENSIONS
to OFF first to prevent vendor
extensions to C++11. Add compile
features for mpags-cipher –
review the documentation to
decide which ones you need.

Use the PRIVATE “scope” flag for
the features as shown. We’ll look
at this in more detail later.

11: Compile Features For mpags-cipher
To declare the compile features we need for mpags-cipher, we use CMake’s
target_compile_features command. This takes the name of the “target” (program or library) a “scope”
flag and a (scoped) list of the compile features the target’s sources use, and require compiler support for. Compile
features are simply strings describing the feature used, e.g. cxx_auto_type when the code uses, e.g. auto
foo = 1;
After adding appropriate C++11 features and re-running make, you’ll see -std=c++11 added!

Try This

22

This is classic example of a build
system handling the details for
us!

Though other tools don’t have
“compile features” directly, they
all provide a “try-compile”
pattern. This is used to exercise
the compiler and find out what
it can do. Its results can be used
to workaround issues or warn the
user as needed.

12: How Compile Features Help
We haven’t had to concern ourselves with exactly which version of compiler we are using nor what parts of the C++
Standard it supports. With C++ moving to a shorter update cycle, this will become more important. For example,
add cxx_binary_literals to the compile features of mpags-cipher and rebuild. You should see that
the -std flag has changed to that for the C++14 standard if your compiler supports it. Otherwise, you’ll get an
error when CMake runs telling you that the feature is not known to the compiler, as shown below.

Notes

23

Set CMAKE_CXX_FLAGS to
the list we’ve been using when
compiling manually.

Of course, check that the flags
are passed to the compiler by
rebuilding with make and
reviewing the compile
commands!

13: Adding Additional Compiler Flags
Compilers provide a vast range of flags, so CMake can’t set all of them for us. You’ll notice that additional warnings
like -Wall that we want to use are not yet set. The default flags used by the C++ compiler can be changed by
setting the CMake variable CMAKE_CXX_FLAGS to a quoted string containing the flags we want to use.

Try This

24

14: Setting the C++ Standard Directly
If you don't know what specific Compile Features you need to include but you do know that you need a specific standard, you
can also use:

set (CMAKE_CXX_STANDARD_REQUIRED ON)

set (CMAKE_CXX_STANDARD 11)

to enforce that you need a particular standard and then specifying which one (C++ 11, 14, 17, etc.). We don't need this now but
we will need it later to specifically ask for the C++ 14 standard

Try This

Try setting the standard to
C++ 14 and check the
appropriate compiler flag
has been added.

Make sure you add the
lines before any defined
targets!

You can also set this for a
particular target using
'set_property'

25

This will be a very simple
exercise where you may argue
the separation isn’t needed!

The core objectives are to see
how we can partition code up
between files, compile all the
code into a single program, and
to illustrate the concept on a
interface.

sdcsd

Notes

15: Reviewing mpags-cipher
Whilst mpags-cipher is relatively simple, it’s already over 150 lines long with three functions, transformChar,
processCommandLine and main. As we add further functionality like reading/writing files and the ciphers
themselves, this complexity will only grow.
Whilst functions will help (and objects later), managing changes to different bits of functionality in a single file will
get tricky. In the next few steps we’ll see how can separate functionality into separate files to isolate them and
allow them to evolve separately.

26

At present we only have an
implementation, or
definition for
transformChar

16: Function Definitions and Declarations
Before we can use a function in C++, it must be known to the compiler. You might have seen this already when using
std::cout if you forgot to include the iostream header.
In your mpags-cipher program, move the transformChar function you’ve implemented to the end of
the .cpp file so that the main function is the first that appears in the file. Try recompiling - does it work?

Notes

27

You may see the term function
prototype used interchangeably
with function declaration. For C+
+ this is o.k., but in older style C
there is a difference!
Here, you can declare a function
without specifying the types of
the arguments. A prototype is a
declaration that includes the
number and type of its
arguments.

17: No Declaration, No Go
You’ll have found the compilation fails with the compiler reporting that transformChar is an “undeclared
identifier” or “not declared in this scope”.
This occurs because we’ve tried to use the function in main before the compiler has seen it.
We could fix this by moving the definition of transformChar back to before main, but instead we’ll inform the
compiler about it by adding a function declaration for it before main

Notes

28

Function declarations are our
first concrete example of an
interface. The key point to grasp
is that an interface frees us from
worrying how a task is done, just
that it is done.

The implementation might be
intellectually interesting, but
knowledge of it is not needed to
use the interface.

18: Declaring Functions
To declare a function, we add a statement that specifies its return type, name, and types of the arguments it takes,
omitting the body, i.e. the implementation or definition, of the function. The declaration tells the compiler about
the function interface, and promises that its definition will be found “somewhere else”. Add a declaration for
transformChar at the beginning of your main program. Check that you can now compile and run the
program o.k.

Notes

29

Link errors like that shown here
can be much more difficult to
resolve as the errors are
occurring at the machine code
level.

Generally, the “missing symbol”
error is most common and
simply means the linker has not
had all needed files passed to it.

19: Declarations Without Definitions
We’ve seen what happens when we try to use a function before declaring it, but what happens if its definition
(implementation) is missing?
Comment out the definition of transformChar but leave its declaration and usage in place. You should see an
error about a missing or undefined symbol. This illustrates that a declaration is just a hint to the compiler - it’s the
linking step of compilation that finds the actual implementation and connects it to where it’s used.

Notes

30

Whilst this is a very simple case,
we can imagine programs with
hundreds, if not thousands, of
functions.
Isolating functionality into
separate files also helps to
localise changes to that file only.
That leads to cleaner commits
and minimises the potential for
errors.

20: Splitting Up Source Code
As it’s the linking step that takes care of resolving and connecting together use of functions (in this case) with the
actual implementation, we don’t have to have all the source code for a program in a single file.
As shown in the diagram below we can split logical blocks of code into separate source files, compile these into
object files and finally link these together into the final program

mpags-cipher.cpp mpags-cipher.cpp

TransformChar.cpp

mpags-cipher.o

mpags-cipher.exe

mpags-cipher.o

TransformChar.o

mpags-cipher.exe

Compile

Link

Compile

Compile

Link

Notes

31

Modularisation is a general term
used here to mean “splitting up
into coherent elements”.

21: Compiling transformChar Separately
To begin modularising mpags-cipher, we’ll move the definition of transformChar into a separate file.
Create a new file named TransformChar.cpp and a subdirectory called MPAGSCipher in your working
copy of mpags-cipher. Move your implementation of transformChar from mpags-cipher.cpp
into this file, but leave the declaration in mpags-cipher.cpp.

Notes

32

We must list the file with its path
relative to the
CMakeLists.txt in which
it is listed.

22: Compiling transformChar Separately
If you try and recompile mpags-cipher at this point, you’ll see that TransformChar.cpp isn’t compiled
and that you get the “missing symbol” error from before.
We need to tell CMake about the new file, so open CMakeLists.txt at the top level of your mpags-cipher
working copy, and add MPAGSCipher/TransformChar.cpp to the source file list in the
add_executable() call for mpags-cipher. Try recompiling - what happens?

Notes

33

If you are seeing any other
errors, or not seeing
TransformChar.cpp
compiled at all, check with us!

23: #include With Separate Sources
Each source file is compiled in isolation, so each file must have declarations available for all objects and functions it
uses. In the case of TransformChar.cpp, it uses std::string and functions from cctype. If you
didn’t #include the headers for these in it, you’re likely to see errors like that shown below when it gets
compiled.
Resolve errors in the compilation of TransformChar.cpp, by adding appropriate includes

Notes

34

Remember that if separate
source files used
transformChar, they
would each have to write out the
declaration by hand. A header
saves this potential source of
error.

Note the inclusion of the string
header. The interface of
transformChar uses this,
so we need to include it.

24: A Header for TransformChar
To use transformChar in mpags-cipher.cpp we still have to remember to add the exact declaration
for it. Remembering that #include <header> verbatim includes the contents of the referenced file, we can
instead move the declaration to a header file and #include that.
Create a new file named TransformChar.hpp under the MPAGSCipher subdirectory and move the
declaration for transformChar into it from mpags-cipher.cpp.

Notes

35

All the guard does is prevent the
code being included into the
same translation unit more than
one.

Note that the symbol of the
#define must be unique.
PROJECT_HEADER_HPP is
usually sufficient, though some
add long random hashes as well!

25: Include Guards
The C++ Standard states that there can be no more than one definition in any translation unit (source file after all
#includes are expanded). What this means is that in general we should never #include a header more
than once. As this is impossible to keep track of manually, we can instead use the C++ Preprocessor to only compile
the code if a symbol isn’t defined.
Enclose the code of TransformChar.hpp in #ifndef/#define/#endif block as shown below
and try recompiling.

Notes

http://en.wikipedia.org/wiki/One_Definition_Rule

36

Though the inclusion of
TransformChar.hpp in
TransformChar.cpp is
not strictly necessary, it ensures
consistency between the
declaration and definition.
The use of quotes in
#include changes the
default locations the compiler
uses to search for headers.

26: #include For TransformChar.hpp
To ensure both mpags-cipher.cpp and TransformChar.cpp can see the declaration, add the line
#include "TransformChar.hpp" to the top of both files. We use quotes rather than angle brackets
as this header is internal to our project rather than external. Try recompiling - what happens?

Notes

37

We could immediately resolve
this, for the GNU compiler, by
changing the inclusion to
#include
“MPAGSCipher/Transfo
rmChar.hpp”.
This is due to how GNU looks up
headers. Other compilers may or
may not do this, so we want to
be more explicit by using CMake.

27: Searching for Header Files
When you recompiled, you encountered the error shown below - the new TransformChar.hpp file wasn’t
found. Compilers only search for header files in a limited set of paths, so when supplying our own headers (or using
any others outside the default locations) we need to inform the compiler about these paths.
We’ll go back to CMake to set these paths up.

Notes

38

We’ve used the PRIVATE scope
again, because no other build
step needs to know about these
directories.

We’ve also added the header to
the list of sources in
add_executable to ensure
it’s visible in IDE projects. This is
not related to the header search
path.

28: CMake and Header Search Paths
To add search paths for the compiler, we use CMake’s target_include_directories command, which
takes a target name and a (scoped) list to directories in which the compiler should search for headers when
compiling that target’s sources (which we specified earlier in add_executable).
Add target_include_directories for mpags-cipher as shown below. Use PRIVATE scope, and the
relative path from the CMakeLists.txt file to the location of TransformChar.hpp

Notes

39

By using CMake, we don’t have
to worry about how different
compilers handle include paths.
We just tell CMake where the
compiler should search and it
handles adding the appropriate
flags for the compiler in use.

29: CMake and Header Search Paths
Once you’ve edited CMakeLists.txt, rebuild and resolve any errors.
With a successful build, you should see that an extra option has been added to the compilation commands. For
GNU and Clang compilers at least, this takes the form
-I/path/to/your/working/copy/MPAGSCipher. The -I<dir> option tells these compilers to
add <dir> to the list of directories under which to search for headers,

Notes

40

Generally, setting N to the
number of cores is sufficient,
though you should be aware of
resource limitations on multiuser
machines.

Other build tools have similar
options, or may even enable
parallel builds by default (e.g.
ninja)

30: Building mpags-cipher Fast
So far, each source file is compiled separately in sequence. However, each compilation is independent with only
the linker needing all the object files at the end. Build tools are aware of this, so usually allow compilation in
parallel (via extra cores/threads) to speed things up
With make, simply use the -jN argument, with N being the number of parallel “jobs”

$ make -j2

Notes

41

If you have any problems with
this, just let us know!

31: Compiling processCommandLine Separately

You now know everything required to continue out 'modularisation' of mpags-cipher by splitting
the processCommandLine function out into a separate file just like you did with
transformChar. Do this now, remembering to add include guards, to update CMakeLists.txt
and commit to github when you're happy!

Notes

42

CMake Documentation

Further Reading

Walkthrough Summary
This has been a very rapid introduction to CMake, but in the process we’ve got mpags-cipher building with all the
correct flags, and begun the task of separating code into headers and sources based on functionality. Whilst this is
quite a bit for such a simple project, it’s been straightforward and we’ll see the benefits this setup gives in future
weeks.
Though we’ve used CMake as our build tool, the same techniques and use cases apply to other systems like
Autotools. The bottom line is always use a good build system!

Software
Build Systems
Textbook

	Slide 1
	Slide 2
	Building a C++ based Executable
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Modularizing mpags-cipher
	Slide 10
	2: How Many Lines?
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	24: Reviewing mpags-cipher
	25: Function Definitions and Declarations
	26: No Declaration, No Go
	27: Declaring Functions
	28: Declarations Without Definitions
	29: Splitting Up Source Code
	30: Compiling transformChar Separately
	31: Compiling transformChar Separately
	32: #include With Separate Sources
	33: A Header for TransformChar
	34: Include Guards
	35: #include For TransformChar.hpp
	36: Searching for Header Files
	37: CMake and Header Search Paths
	38: CMake and Header Search Paths
	39: Building mpags-cipher Fast
	Slide 41
	Slide 42

