
1

Version Control Walkthrough with

Mark Slater based on slides from Ben Morgan

2

A Version Control Walkthrough with Git

• We haven’t actually written anything yet, and this is the perfect time to get
mpags-cipher under version control so you can use it through the whole
course. We’ll be using git as our version control system, with github.com
acting as a central repository.

• This will allow us to to use the ‘Github Classrooms’ feature which will mean
you will have a clean repo to start each day from. You can then apply your
changes to this and we can add comments, changes, etc. directly in github.

• Aims of the walkthough:
• Create a repo from the Github Assignment, get a working copy, add files,

commit changes and make tags
• Show diffs and logs for the commits we’ve made
• Push our local changes to the central repo, Pull changes from another

repo

Tools you’ll need

4

Other hosting services exist
for git, though github is
currently the most popular.

Similar hosting services
exist for other VCS.

Notes

1: Creating a Github Account
Whilst git is completely distributed, to help with working in several locations and to supply solutions, you’ll create
a repository to be an authoritative one. This will be created for you when you go to the link for each assignment on
each day. However, before you can do anything in Github, you need to sign up for an account.

5

Though you will be creating a
new repository for each day of
the course, the previous repos
will be kept until at least the end
of the course for you to refer
back to.

Notes

3: Creating Your mpags-cipher Repository
You can create repositories in github in a number of ways: Creating one from scratch on Github, pushing an already
existing local repo, forking an existing repo on Github, etc. However, for this course, the base repo that you’ll be
working from each day will be created for you from a template repo created by us. To create the one for Day one,
go to the link on the course Day 1 page.

6

Though you don’t need to for
this course, you can create repos
from scratch within github or
from the command line (using
git init) and then push to
github.

4: Your mpags-cipher Repository
After accepting the invitation to the classroom assignment, you should be sent a link to the repository you'll use for
today (they will be new links for the other days!). This will be stored in the cpp-pg-mpags group but you're
welcome to 'fork' it to your own account at a later date if you want!

Notes

7

As the output of git help notes,
to get help on a specific
command, simply append its
name to git help. It will open a
man style page for the command
(simply use ‘q’ to exit this).

Of course, also refer to text
books and online resources such
as git-scm.com.

5: Command Line Git: Getting Help
With the repo in place we move back to command line git to get and work with it. Whilst we’ll walk through the
steps, if you need help, just ask! Also use man git for plenty of useful information. Git provides a fast command
line help interface, so you can also just type

$ git help

Notes

8

We’ll use the HTTPS protocol to
clone as this is the easiest to use.
The URL for cloning your GitHub
repo can be found on the right
hand side of its front page, as
shown on the left.

6: Getting Your Repository
To obtain a local copy of our repository on GitHub, we clone it. This command takes the URL of the remote
repository and a local directory where we want to create the clone. Various protocols for the URL are supported,
including HTTPS and SSH

$ git clone <repourl> <localdir>

Notes

9

You can keep the mpags
directory somewhere other than
in HOME if you wish.

Make sure to use your github
repo in the clone URL!

Naming the directory holding the
repository with a “.git” extension
is not required, but helpful in
marking its nature.

It’s good practice to separate different projects, so we’ll clone our repo under a dedicated directory. Open a
terminal session and check that you’re in the HOME directory and cd to it if not. Create a directory named mpags
and cd into this. Finally, use git clone to clone your GitHub repository into a directory named mpags-
cipher.git
The reason for a two-level directory structure will become apparent once we start to use CMake.

7: Cloning your Repository

Notes

10

As this directory holds all of your
changes, be very careful not to
delete it!

We won’t dig into the content or
structure of .git in this course. If
you’re interested in learning
more about this, the main Git
references cover it in detail.

Change into the mpags-cipher.git directory and run ls -larth to see all the files. Apart from the files
you’ll have seen on the original GitHub site, there’s an extra directory, .git.

This is git’s “database” holding the complete history of changes plus configuration information. It’s this holding of
the complete project history that allows the distributed version control

8: Repository Structure

Notes

11

Of course at the moment, there’s
not much to report as we have
not made any changes yet

Get into the habit of running git
status regularly to see what
you’ve changed.

9: Viewing Repository Status
As we add and edit files, it’s useful to keep track of the repository status without changing anything. With git,
simply use the status command to view the current repository status:

$ git status

Notes

12

Git can use the EDITOR
environment variable rather than
core.editor

You can configure git options
globally (--global) or locally
in a repository (--local)

Also see the Git SCM Book
and try out some options!

10: Configuring Git
Before we start to use git, it’s useful to configure it with the details to record in commit messages, an editor to
use to write messages and to display changes using colour markup. The config command sets parameters,
<key>, that git knows about to required values

$ git config --global <key> <value>

Hints

http://git-scm.com/book/en/Customizing-Git-Git-Configuration

13

Add a bit more detail about the
project, and create placeholder
sections for “How to Install” and
“Authors”. Use the link above for
a format guide

‘#’ marks major sections, and
those with ‘##’ are subsections.
When we upload our project to
github, we’ll see how these are
displayed.

11: Improving the README file
We’re going to start our project by improving the README for mpags-cipher. This is a file that sits in the top
level of the project and provides some basic information about the project, how to install it, and other details such
as author/copyright/license details.

Our README is in plain text, using Markdown formatting. We use Markdown because it is human readable but
easily convertible to other formats.

Notes

http://daringfireball.net/projects/markdown/

14

“staged” files
- Ready to be commited
“unstaged” files
- Changed but not staged
“untracked” files
- Not tracked by git yet
“deleted” files
- Deleted by git and ready for
removal

12: Staging Changes for Commit
Having saved README.md, if you run git status again, git can see it’s been changed. However, git marks
these changes as “unstaged”, i.e not yet ready to be committed to its database. To tell git we want to “stage” the
changes, use the git add command on the file(s):

$ git add README.md

Notes

15

The staging area is a place to
queue up (or remove) changes
before they are committed. This
is useful when we start to deal
with changes across multiple
files

A “commit” is a snapshot of the
repository. After the commit,
status shows that we’re
ahead of where we cloned from
(GitHub).

13: Committing Changes
You’ll have noticed that when you ran git status after adding README.md it only says “Changes to be
committed”. Git stages changes before committing them to the repository. To store the changes we use the
commit command with a message describing the changes:

$ git commit -m “Improve README”

Notes

16

Make a few more edits to
README.md and use git
add and git commit for
each to get into the feel of
staging and committing.

Remember to use git
status regularly to see what’s
happening!

14: Making Further Changes
Now we’ve staged and committed README.md, we can continue to make changes. So edit your README.md,
for example, add an empty section “Documentation”. Save the file and run git status again. As before, git
recognises we’ve made changes, but these are not yet staged. To actually update the repository, we run git add
again to stage the change then git commit to update the repository. This cycle of staging and committing is
the basic git workflow.

Try This

17

If you have a change staged
then make further changes,
just use git add to append
these to the staging area.

Note that you need to do this if
you’ve staged a file then made
further changes to it.

15: Unstaging Changes
So you’ve staged a change, and then you realise it either breaks something or you want to add something else. As
you may have noticed, git status actually tells you what to do in this case,
so make a change, stage it up and then use git reset to unstage it:

$ git reset HEAD README.md

Notes

18

Once staged, git recognises
mpags-cipher.cpp as a
“new file”. However, the
next commit step is identical, so
just commit as normal!

Commits can contain both new
files and modifications to
existing ones. Note that you can
run git add with multiple
files at once.

16: Adding New Files
Staging/committing new files is the same as working with existing files. Create a new file named mpags-
cipher.cpp with a single line “// mpags-cipher.cpp” and save it. Run git status again, and git
recognises a new “Untracked” file, so just use git add to track it:

$ git add mpags-cipher.cpp

Try This

19

After using git rm, make the
commit.

As with all changes, you can
stage deletions along with
additions and modifications.

Like git add, git rm can
be run with several files at once.

17: Removing Files
Files can also be removed, but note that git’s rm command removes the file(s) from both the repository and local
disk! Git regards a deletion as a change, so rm also stages the deletion for commit (though the physical file has
been deleted). Try removing the mpags-cipher.cpp file:

$ git rm mpags-cipher.cpp

Try This

20

Plain log displays everything! To
get the N most recent commits,
use git log -nN.

You can also use git log
--summary to get a more
detailed overview, though it
doesn’t show much as we’ve only
worked with one file.

18: Viewing Logs
We’ve now made a few commits to our repository, so how do we go back and see what we’ve done and why? Just
use the log command!

$ git log

Try This

21

Git shows difference using the
standard diff format for
additions/removals. On the left,
additions are in green, removals
in red.

Depending on the default
configuration, the diff may be
output to a pager, in which case
use ‘q’ to quit.

19: Viewing Changes
The basic log command shows the timeline of changes, but not what changed. To see what actually changed
between commits, we can use git log -p or the diff command. Without any arguments, it shows a diff
between the last commit and any unstaged changes:

$ git diff

Notes

http://en.wikipedia.org/wiki/Diff

22

The commit specifier needs to
contain enough characters to
uniquely identify the commit.
Note that your hashes will differ!

The arguments to git diff can
take a variety of forms. See man
gitrevisions for more
details, or the more helpful
Git SCM Book! Try some of these
out.

20: Changes between Commits
As you’ll have seen in using git log, git labels commits using a 40 character hash code (cf subversion’s revision
numbers). You can use these labels to view differences between any two commits, though because hashes are
unique, you don’t have to type out 80 characters, e.g:

$ git diff 8574 b1aa

Try This

http://git-scm.com/book/en/Git-Tools-Revision-Selection

23

There’s a good example in the
text on the left (taken from
a post by Tim Pope).

If you “fixed a bug” you should
say which bug, and how it was
fixed. You might also say (and
include in the commit) that a test
has been added to check for the
bug in the future.

21: Writing Good Commit Messages
Our edits so far have been simple and confined to one file. In these cases, a single line commit message using git
commit -m “commit message” is completely sufficient (e.g. “Fixed typographic errors”). As we start to
make more involved commits involving several files, then we need to provide more detail. Because of the way git
works with patches and email, it tends to recommend the specific style of commit message listed below.

Why?

http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html

24

You can also have a global
ignores file. You could have a file
named
.global_gitignores in
your HOME directory. Git can be
made aware of this file by setting
the core.excludesfile
variable to point to it in the
global git config

22: The .gitignore File
When you run git status, git will report any files it doesn’t track (“untracked”). In some cases we’ll have files
that we don’t want git to track, for example files generated by the build or text editor temporaries, but we may
accidentally add them to the repository (e.g. by git add .).
Git uses the .gitignore file in our repository (provided by upstream) to determine what to ignore. This contains a list
of filename patterns that git should ignore and already contains patterns for C++ compiled objects. Have a look at
the .gitignore provided in the repository and make sure it looks like below:

Notes

25

Follow the steps on the left to
tag your repository,

Tags can have any name, but git
projects tend to use
‘vMAJOR.MINOR.PATCH’ for
version numbers. “Annotated”
tags are the best to use to begin
with, as they can take extra info
about the tag. Use show to see
this info.

23: Tagging
We’ve seen that in git, commits are described by a 40 character hash. At certain points in development, we’ll want
to mark a commit as a usable, stable piece of work. The hashes aren’t an easy way of marking these points, so
instead we create a “tag”. Current tags are listed via:

$ git tag

Try This

26

Because we cloned from Github,
the default “origin” remote
points to it.

The “-v” flag gets git to show the
full URLs.

As we’ll see, we can have
multiple remotes.

24: Sharing Changes between Repositories
Whilst we’ve made commits to our repository, these are all local as we work on a copy of the repository. If you go
back to the GitHub page for your project and refresh the browser, you’ll see that this is still in its original state. The
distributed nature of git means it can track a set of repositories, which we can view with the remote command:

$ git remote -v

Notes

27

We use the https protocol, so git
will ask you for your github
user/pass to push!

We won’t cover Branching, but
they can be thought of as
separate sequences of commits.
They’re used to partition
development, such as
implementing new functionality,
without interfering with others.

25: Pushing your Repository to Github
To send our changes to a remote repository, we use git push. This can be supplied with the name of the
remote to push to ('origin' usually), and the “refspec” or branch we want to share. In our case though, we can just
use the defaults (origin and the current branch - Day1Branch):

$ git push

Notes

28

Now we can see the advantage
of using Markdown format, as
Github has rendered it nicely for
us.

We could have used other
markup styles as well.

26: Viewing Changes on GitHub
After running git push, go back to your browser and refresh the page for your repository. You should now see
that it’s updated with the commits you’ve made up to the point you pushed.

It provides a very nice interface for browsing changes, so explore the viewing options and see how these map to the
git command line arguments.

Notes

29

You should always push tags so
they appear when others pull
from your remote repo
(including you!).

If you look on your github
repository, you should see a ‘1’
next to the “releases”. Clicking
on this will take you an interface
where you can download a
source archive for your code at
the tag!

27: Pushing Tags
Like any other repository “refspec”, tags can be pushed to a remote repository. However, push does not push tags
by default (you can see this as Github does not list your tag yet under “releases”). To do this, we have to either
specify the tag name or use the --tags argument:

$ git push origin v0.1.0

Notes

30

git clone another copy of
your github repo, make some
commits, then push to github.
Return to your main copy, then
git pull to get those
changes. Git will report what
changes have been made.

Note that git pull is two steps: i)
Fetch changes, ii) Merge changes.

28: Pulling Changes from Github
At present we’re only working with a single copy of our GitHub repo. Later you may obtain other copies, e.g. on
your Laptop or another Location, so commits will get pushed to Github that other copies don’t yet have. To update
the current copy of the repo, we can use git pull:

$ git pull origin

Try This

31

Conflicts are most common in
collaborative development, but
can also happen in your own
work, so it’s worth learning how
to resolve them!

31: Git Conflicts
Git is very smart at merging content changes in files, but it is not infallible - e.g. if a single word has changed on the
same line, which one should be preferred? When conflicts occurs, git will warn us about them, and git status can be
used to review them. Make an edit to README.md from github and then alter the same line in a different way in
your local copy of the repo. After committing, pull the changes from the remote repository. git status will
say there are conflicts that can't be automatically dealt with. We need to edit the file(s) to resolve the conflict, then
add/commit just as we did for any other edit.

Notes

32

There may be more than
one conflict block in a file!

This is where having a good
syntax aware text editor
helps. Add-ons are usually
available specifically to
highlight and handle git
syntax like the conflict
block.

32: Viewing Conflicts
Git marks conflicts in files using a special markup block showing the conflicting content

<<<<<<< HEAD
local content
=======
remote content
>>>>>>> refspec

The HEAD block shows our local content.
‘=======‘ divides the sections, and after this is shown
the conflicting content. This ends with the “refspec” of
the commit causing the conflict

Notes

33

Don’t be frightened of conflicts,
git provides all the tools to help
you resolve them!

Though you are unlikely to
encounter conflicts in this course
as you will be using your own
repo, it's good to know how to
deal with them.

33: Resolving Conflicts
The content of the conflict has to be resolved manually, and is up to you (it may be a simple merge, choosing one
or the other, or more complex). Once you’ve done this, remove the git markup (<<<<<<< HEAD, =======
and >>>>>>> refspec) and save the file. Using git status will still show it as unmerged, but we can
now use git add to stage it, followed by git commit to commit it and all the other changes brought in.
Finally, push the changes to your repository!

Notes

34

Don’t Forget Resources

34: And we’re done
That about covers the basic usage of git and github. All of the techniques are applicable to other VCSs you may
work with, of particular importance being the writing of good commit messages so you (and your collaborators)
know not only what changes were done, but why!
Through the course, remember to commit your work regularly when you have got something working (NEVER
commit code that doesn’t work for you!). Push to GitHub regularly. Use tags to mark feature/task completion,
again, the tag should work!

35

Homework Hand In with Git

• Through github classrooms, you will get a repository for each day.

• Once you’re happy with your code from the end of each two day session, email us and we can
have a look at your repos and leave comments!

	Slide 1
	A Version Control Walkthrough with Git
	Slide 3
	1: Creating the Repository on Github
	3: Creating Your mpags-cipher Repository
	4: Your mpags-cipher Repository
	5: Command Line Git: Getting Help
	6: Getting Your Repository
	7: Cloning your Repository
	8: Repository Structure
	9: Viewing Repository Status
	10: Configuring Git
	11: Improving the README file
	12: Staging Changes for Commit
	13: Committing Changes
	14: Making Further Changes
	15: Unstaging Changes
	16: Adding New Files
	17: Removing Files
	18: Viewing Logs
	19: Viewing Changes
	20: Changes between Commits
	21: Writing Good Commit Messages
	22: The .gitignore File
	23: Tagging
	24: Sharing Changes between Repositories
	25: Pushing your Repository to Github
	26: Viewing Changes on GitHub
	27: Pushing Tags
	28: Pulling Changes from Github
	31: Git Conflicts
	32: Viewing Conflicts
	33: Resolving Conflicts
	34: And we’re done
	Homework Hand In with Git

