

1

Vectors
Mark Slater

2

● For the next part of the cipher code we will need to start using arrays
or collections of objects

● To deal with collections of objects dynamically we need to be able to:
➔ Hold any type
➔ Resize the collection based on runtime values
➔ Ensure the memory is allocated and de-allocated correctly
➔ Add and remove objects from the collection
➔ Loop over the collection
➔ Get basic information from it (e.g. size)

● There is another extended C++ type very similar to std::string that can
do all of these things and more – std::vector

Overview

3

● In order for a std::vector to store any type you want, you need to specify at compile time what
type you want it to hold

● You do this using the angle bracket/template notation with the type you want it to store in the
brackets

● You can initialise the contents of the vector ('={}') OR declare it's properties ({}) on creation (not
both!)

● This is just a convention due to a quirk of the language but will help to avoid errors.

● Note there is an added complication for numerical vectors and declaring there size – it will
actually create a vector of 1 element.

Declaring and Initialising

#include <vector>
#include <string>

int main()
{

std::vector<int> vec_int{};
 std::vector<int> vec_int2 = {1, 2, 3, 4};
 std::vector<double> vec_dbl = {1.2, 3.4, 4.5};
 std::vector<std::string> vec_str = {"msg1", "msg2"};

 std::vector<std::string> vec_dbl2{5};

 std::vector<double> vec_dbl2{5};
}

You can put any type
that meets the vector

requirementsAs with std::string, you
need the 'vector' header

Create a vector with 5
(uninitialised) elements

Actually creates a vector
with a single element

(‘5’) in it

4

● As std::vector is a more complex type than an integer or double type, it also has some
functions associated with it that can be used to manipulate and get info from the object

● Some of the most useful are:

➔ size() - return the number of elements in the vector
➔ empty() - returns true or false depending on if the vector has zero elements
➔ push_back(<object>) - Increase the size of the vector by one and add an object

to the end
➔ pop_back() - Remove the last object in the vectors
➔ at(<index>) / [<index>] operator – Access element <index>
➔ emplace_back(<constructed object>) - a more efficient version of push_back

that creates the object in place. See Day 6!
● To call these functions, you use the '.' operator on the object

● We'll learn a lot more about this when we deal with classes!

Useful Member Functions

5

std::vector Example 1: Manipulation

#include <vector>
#include <string>
#include <iostream>

int main()
{
 // Construct a vector
 std::vector<double> vec = {1.2, 3.4, 5.6};

 // print out the vector size (3)
 std::cout << vec.size() << std::endl;

 // add a few elements
 vec.push_back(7.8);
 vec.push_back(9.1);

 // vector size (5)
 std::cout << vec.size() << std::endl;

 // remove an element
 vec.pop_back();

 // vector size (4)
 std::cout << vec.size() << std::endl;

 // loop over the vector using an index counter
 for (size_t i{0}; i < vec.size(); i++)
 {
 std::cout << “Index: “ << i << “ “ << vec[i] << std::endl;
 }
}

Use the '.' operator to
call the member

function 'on' the object

To access the elements you can
use a for loop and index

counter. There is another way
but we’ll come back to this!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5

