Vectors

Mark Slater

UNIVERSITYOF
BIRMINGHAM

Overview

* For the next part of the cipher code we will need to start using arrays
or collections of objects

* To deal with collections of objects dynamically we need to be able to:

> Hold any type

> Resize the collection based on runtime values

> Ensure the memory is allocated and de-allocated correctly
> Add and remove objects from the collection

> Loop over the collection

> Get basic information from it (e.g. size)

* There is another extended C++ type very similar to std::string that can
do all of these things and more - std::vector

Declaring and Initialising

* Inorder for a std::vector to store any type you want, you need to specify at compile time what

type you want it to hold

* You do this using the angle bracket/template notation with the type you want it to store in the

brackets

* You can initialise the contents of the vector ('={}') OR declare it's properties ({}) on creation (not

both!)

* This s just a convention due to a quirk of the language but will help to avoid errors.

* Note there is an added complication for numerical vectors and declaring there size - it will
actually create a vector of 1 element.

As with std::string, you _yp-#inciude <vector>

#include <string>

need the 'vector' header

You can put any type
that meets the vector
requirements

int main ()

{

std:
std:
std:
std:

Create a vector with 5
(uninitialised) elements ——, o
S

:vector<int> vec_int{};

:vector<int> vec_int2 = {1, 2, 3, 4};
:vector<double> vec _dbl = {1.2, 3.4, 4.5}; ACtually IS e

:vector<std::string> vec_str = {"msgl", "msg2"}; Wlth d single element

: :vector<std: :string> vec_dblZV (5) In It
vector<double> vec dbl2{5};

std::

Useful Member Functions

* Asstd::vector is a more complex type than an integer or double type, it also has some
functions associated with it that can be used to manipulate and get info from the object

e Some of the most useful are:

>

2>

>

size() - return the number of elements in the vector
empty() - returns true or false depending on if the vector has zero elements

push_back(<object>) - Increase the size of the vector by one and add an object
to the end

pop_back() - Remove the last object in the vectors
at(<index>) / [<index>] operator - Access element <index>

emplace_back(<constructed object>) - a more efficient version of push_back
that creates the object in place. See Day 6!

* To call these functions, you use the " operator on the object

 We'll learn a lot more about this when we deal with classes!

std::vector Example 1: Manipulation

#include <vector>
#include <string>
#include <iostream>

int main ()

{

// Construct a vector Use the" operator to
std: :vector<double> vec = {1.2, 3.4, 5.6}; call the member

function 'on' the object

// print out the vector size (3)
std: :cout << vec.size() << std::endl;

// add a few elements
vec.push _back(7.8);
vec.push back(9.1);

// vector size (5)
std: :cout << vec.size() << std::endl;

// remove an element
vec.pop_back() ;

To access the elements you can
// vector size (4) use a for loop and index

std: :cout << vec.size() << std::endl; h
counter. There is another way

// loop over the vector using an index counter but we'll come back to this!
for (size_t i{0}; i < vec.size(); it++)
{

std::cout << “Index: “ << i <K " ™ K< vec[i] << std::endl;

}

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5

