

1

C++ Syntax and Compiler Usage
Mark Slater

2

Overview

1. Code Creation and Compilation

2. Types, Objects, Values and Variables

3. Operators

4. The Compiler and Pre-Processor

3

What is C++?
● C++ is a general purpose object oriented programming language

widely used in the software industry and beyond. It was developed by
Bjarne Stroustrup in 1979 as an enhancement to the C language ('C
with classes')

● Though comprised of fairly basic syntax and conventions, it is
incredibly powerful, especially with the addition of the 'standard
libraries'. Anything you can think of to do on a computer can be (but
not necessarily should be!) done in C++

● C++ has been adopted as the standard for most coding tasks in
modern Particle Physics and so it's well worth getting to know!

4

1. Code Creation and Compilation

5

#include <iostream>

int main()
{
 // Read and print three
 // floating point numbers
 std::cout << "Give 3 nums" << std::endl;
 float a{0}, b{0}, c{0};
 std::cin >> a >> b >> c;
 std::cout << "You gave... ";
 std::cout << a << ", " << b << ", "

<< c << std::endl;
}

As already stated, C++ code can be written using any text editor, but to
create the actual programs requires a compiler that creates the machine-
readable code

Raw Code

Compiled Code Additional Libs

Executable

Writing and Compiling Code

6

> cd $HOME/mpags-cipher.git
> emacs mpags-cipher.cpp & #(or vim)

> g++ -std=c++11 -o mpags-cipher \
mpags-cipher.cpp

> ./mpags-cipher

Hello World!

>

#include <iostream>
int main()
{
 // This is a comment
 /* This is a
 Multiline comment */

 std::cout << “Hello World!\n”;

}

To demonstrate this process, you will create the ubiquitous 'Hello World'
program:

1. Go to your cloned git repository

2. Add a new file 'mpags-cipher.cpp'

3. Type in the below code and then save it

4. Run the g++ compiler

5. Execute the program!

The Hello World Program (Ex. 1)

Note the trailing slash is just to
indicate the line continues – you

don't need to type it!

7

#include <iostream>
int main()
{
 // This is a comment
 /* This is a
 Multiline comment */

 std::cout << “Hello World!\n”;

}

Before we start looking in more detail at C++ coding, we will just cover the
basic syntax of program you've just written

Preprocessor directive to
include other code – see later!

The braces indicate blocks ('scope')
of code, in this case a function

It is good practise to add
comments to your code –
these are ignored by the

compiler but help you
explain what you're
trying to do, both to

other people and
yourself a few months

on!

A function definition
- see later

Every statement in C/C++ must be ended
with a semi-colon. This is a frequent cause

of compiler errors so watch out!

Basic Syntax of a C/C++ Program

8

2. Types, Objects, Values and Variables

9

C++ (and many other languages) have a defined way of holding and
organising data within a computer's memory

The appropriate terms are:
➔ Types – How to interpret data in a memory location ('object') and what

operations can be performed by it
➔ Object – Defined area of memory that holds the data ('values') associated

with a type
➔ Value – Actual data/bits in memory interpreted by the 'type'
➔ Variable – A flag or name of an area of memory ('object')

These are a bit abstract at the moment, but we'll show examples in a few
slides time!

What are Types, Objects, Values and Variables?

10

We will start by introducing the basic types that are available in C++ and showing
what happens when these are created and destroyed

The built-in basic types are:
➔ A boolean (true/false) – 'bool'
➔ Integer number – 'int'
➔ Floating point number – 'float'
➔ Double precision number – 'double'
➔ Single Character/0-255 number – 'char'

To declare a variable (a named object of this type), use the following syntax:

<object_type> <variable_name> {<initialisation_parameters>}

This will also create an object of the requested type (i.e. assign the appropriate
memory) and initialise it with the given parameters

Note that numerical variables
can also be 'signed' (default)

or 'unsigned'

Basic Types and Initialising Variables

11

● Initialisation using the braces ('{}') is termed 'Uniform Initialisation' and was
introduced in C++11

● There are a number of different ways of initialising variables that you'll come
across but this is the recommended method

● Other examples are shown below:

Aside: Other Forms of Initialisation

int main()
{
 int a;

 int b = 1;

 int c(1);

 int d{1};
}

'c' is initialised properly but
this form can be confused
with function definitions

'a' isn't initialised. This is
almost always a bad idea!

'b' is initialised properly but this
type of initialisation can't be

used with more complex types

C++11 Uniform initialisation – the
best way!

12

To show you how variables work,
we'll now go over a basic program
that initialises some variables, does
a calculation and outputs the result

It may seem a little basic at
present, but it will help you to
understand how the computer
interprets variables, objects, etc.

90343 21

Variables in Action (1)

Memory Locations (4 bytes each)

#include <iostream>

int main()
{
 int a; // BAD!!
 double b = 1.2; // Not Great!
 double c{3.4};

 a = 43;
 b = 2.2;

 c = a * b;

 std::cout << c << std::endl;

 return 0;
}

13

 c b a

Variables in Action (2)

The 3 variables are declared:

● The markers are the variables/names of each
object

● The coloured outline represents the type –
doubles take more space!

● The grey boxes themselves are the objects

Note that for 'a', all this does is create the object,
NOT the actual value - the initial value is junk!

If b was an int, then this initialisation would only
give a warning of the narrowing rather than an
error

1.23.4

#include <iostream>

int main()
{
 int a; // BAD!!
 double b = 1.2; // Not Great!
 double c{3.4};

 a = 43;
 b = 2.2;

 c = a * b;

 std::cout << c << std::endl;

 return 0;
}

14

 c b a

Variables in Action (3)

We now assign values to the 3 variables

This gives the 'a' object a defined value
and overwrites the others

Note that c is assigned correctly with
double precision as the compiler will
always use the highest accuracy type

The value of 'c' is then printed to the
screen using the Standard Library
'std::cout' object as before

43 2.294.6

#include <iostream>

int main()
{
 int a; // BAD!!
 double b = 1.2; // Not Great!
 double c{3.4};

 a = 43;
 b = 2.2;

 c = a * b;

 std::cout << c << std::endl;

 return 0;
}

15

Variables in Action (4)

At the end of the program/function the
following happens:

● The return value is set to zero
● The objects associated with the

variables are deleted
● The memory isn't reset so the values

are still present

43 2.294.6

#include <iostream>

int main()
{
 int a; // BAD!!
 double b = 1.2; // Not Great!
 double c{3.4};

 a = 43;
 b = 2.2;

 c = a * b;

 std::cout << c << std::endl;

 return 0;
}

16

● Now edit the code in between the braces in your previous 'Hello
World' program to do the following:

➔ Create, modify and output an integer variable
➔ Create a ‘double' variable and output this
➔ Initialise another integer from this double – note the output from the

compiler
● Note that to output things to the console, use the following:

Getting Experience with Variables – Part 1 (Ex. 2)

std::cout << my_var << std::endl;

17

There is a basic type for a single character but not for a 'string' or 'array of
characters'

This is because a string can be of variable length and requires much more
complicated manipulation than the other types

Use the std::string type when dealing with strings. Though this looks a lot
more complicated, you can generally treat it as a basic type

Note that you will need to #include the 'string' header!

Using Strings

#include <iostream>
#include <string>

int main()
{
 std::string msg {"Hello"};

 std::cout << msg << “\n”;

 return 0;
}

Initialise the string
variable

Look at cppreference.com to
find the headers to use for
other types and functions

'std::' is required as the string
type is part of the 'std'

namespace ('group') Print the string as
before

18

● Variables are used to store any information you wish to keep available to
your program, however you may not want to modify some (most!) of these

● When declaring variables, it is good practise to tell the compiler if they
should be kept constant or if modification is allowed

● This is done by using the 'const' keyword before the variable type

A good rule of thumb is to declare everything const unless you
are certain you have to modify it!

Constness

int main()
{
 int a{5};
 a = 10;

 const int b{5};
 b = 10;
}

Normal non-const
(modifiable) variable can be

altered after initialisation
const variable cannot be

modified after initialisation –
the compilation will fail

19

● Again, edit the code in your mpags-cipher.cpp to do the following
➔ Create a const 'double' variable and output this
➔ Create another integer variable then modify it
➔ Make the variable 'const' and attempt to compile
➔ Create, initialise and output a string variable

Getting Experience with Variables – part 2 (Ex. 3)

20

3. Operators

21

● In addition to variable declaration, we’ll now introduce operators
● These are symbols that perform a specific operation on one or more

objects. A subset of these are the arithmetic operations you're familiar with:
➔ Multiplication: a * b
➔ Addition: a + b
➔ Subtraction: a - b
➔ Division: a / b

● For example, 'a + b' is the addition operator being applied to the objects 'a'
and 'b'

● Also note that operators in C++ are nothing 'special' – they are essentially
shorthand for calling other bits of code

Operators (1)

22

As well as these arithmetic operators, there are several more language specific ones:

➔ Assignment: a = b
➔ Dec/Increment: a--, a++
➔ Bitwise shift/stream: a << b, a >> b
➔ Modulus: %
➔ Array: []

What each operator does is entirely a property of the type(s) they are operating on, e.g. The '<<'
operator when used on an int will bit shift it but when used on 'cout' will output the object to the
screen

The syntax for this depends on the operator, but a few examples are:

<object1> <operator> <object2> (e.g. *, +, -)

 <object1><operator> (e.g. [], ++)

Note that operators also have precedence, associativity (left <-> right) and arity (# of operands). For a
full description, see:

https://en.cppreference.com/w/cpp/language/operator_precedence

Operators (2)

23

As another example of simple operator use, we will look at the 'string'
type

As mentioned, this type can be considered an array or list of characters
(chars) and so to access a single character from that array, you use the '[]'
operator

Single Character Access

#include <iostream>
#include <string>

int main()
{
 std::string msg{"Hello World"};

 // output 'Hello World'
 std::cout << msg << std::endl;

 // output 'o'
 std::cout << msg[4] << std::endl;

}

The array operator references
the zero-indexed list of letters in

string and returns the
appropriate element

24

● Once again, alter the code you’ve been writing so far to do the
following:

➔ Create double and integer variables
➔ Output the product of these
➔ See what happens when you divide a double and an int and then two ints
➔ Create another string variable
➔ Create a single char variable (type ‘char’), assign it the value of one of the

letters in your string and then output this variable.

Getting Experience with Variables – part 3 (Ex. 4)

25

4. The Compiler and Pre-Processor

26

Compiler Flags

● As with most programs, g++/clang/intel can take a number of different command line
arguments and flags that can alter the behaviour of the program

● Some of the most useful ones are:

➔ -std – This defines what C++ 'standard' to use. We will be using -std=c++11
➔ -o – The filename to output to
➔ -I – Also look in the given directory for include files
➔ -L – Also look in the given directory for library files
➔ -l – Link to this library (libMyLibrary.so → -lMyLibrary)
➔ -c – This will run the compiler but NOT the linker. Used for compiling individual

source files before creating an overall program
➔ -save-temps – Save the intermediate files of compilation
➔ -v – Print commands used at each stage of compilation
➔ --version – Print the version of GCC being used

● You can get a full list of the flags using 'man g++'

27

Compiler Errors and Warnings

● You have already encountered a few errors and warning during compilation
● These can be the rather cryptic way of the compiler saying there's something

wrong
● You should always aim for your code never to produce any warnings or errors and

there are some flags to the compiler to help with this:
➔ -Wall – Enables some common warnings (NB: Not all!)
➔ -Wextra – Even more warnings
➔ -Werror – Turn all warnings into errors
➔ -Wfatal-errors – Stop compilation on the first error encountered
➔ -pedantic(-errors) – Issue warnings(errors) from strict ISO compliance
➔ -Wshadow – Enable warnings for 'shadowed' variables

● For this course, we will use all these flags and so our cmd line will be:

g++ -Wall -Wextra -Werror -Wfatal-errors -pedantic -Wshadow ...

28

Preprocessor

● Before actual compilation, the compiler goes through a 'Preprocessor' step
that can be very useful for changing what code is actually compiled

● The most widely used is the #include directive which you have already
seen. This effectively inserts the contents of the given file at that part of
the code

● There are several others which can be useful for situations like cross
platform development:

➔ #define – Definitions can be used to replace strings in the code or
used in preprocessor conditionals

➔ #ifdef/#else/#endif – Basic conditionals that will include or
exclude certain code depending on some conditions

Generally these are used for advanced use cases though we will be using the
conditionals later in the course

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

