
C++ command-line arguments
Tom Latham

(based on slides from Matt Williams)

�1

Command-line arguments

• There are two main ways to pass information into a program:

• Interactively (text or GUI)

• Good for new users

• Step-by-step instructions

• Command-line arguments

• Reproducible

• 'Fire and forget'

�2

An example: g++

• It would be a pain to have to deal with g++ interactively 
 
 
 

• Instead we provide the program arguments up-front so we can run the same
command over-and-over again with minimal typing

$ g++
Enter name of C++ file: main.cpp
Enter name of output file: myprogram
Enable C++11 [y/n]: y
Enable all warnings [y/n]: y

$

$ g++ -Wall -Wextra -std=c++11 -o myprogram main.cpp

�3

Arguments to mpags-cipher

• We would like to be able to do the same with our program, e.g.

• But how do we get the information that the user supplies on the command-
line into variables within our program?

• The operating system splits the command line by whitespace and passes it to
the program as a list of strings: 

• The values are passed to the main() function of our program

$./mpags-cipher -i plain.txt -o cipher.txt -c caesar -k 17 --encrypt

{"./mpags-cipher", "-i", "plain.txt", "-o", "cipher.txt", "-c", "caesar", "-k", "17", "--encrypt"}

�4

Reading arguments in C++

• Due to backward compatibility with C, the way that these appear in main()
are as two function arguments:

• argc is an integer - the number of arguments

• argv is a C-style array of C-style strings - the arguments themselves

• These are rather fiddly to work with, so best to immediately convert them into
a more usable form, a std::vector of std::string objects:

• We can then loop over and/or access the individual arguments as with any
std::vector

int main(int argc, char* argv[])
{

const std::vector<std::string> cmdLineArgs { argv, argv+argc };

�5

Exercise: reading arguments in C++

• Edit your main function to print out each argument that was passed to the
program

• You'll need to use the code on the previous slide and add a 'for' loop

• Try running your program with different numbers of arguments and make sure
it adapts

�6

Terminology

• Useful to distinguish between:

• argument	

• These are non-optional parts which are fundamental to the
program. e.g. the list of .cpp files passed to g++	

• option	

• An optional argument, usually marked by --output=foo or -o foo	

• flag	

• Like an option but without the second part. Changes some
behaviour of the program. e.g. -Wall

�7

Exercise: printing a help message

• A common command-line flag is -h or --help, which makes the program print
some information about how to use the program, e.g. 
 

• Edit your program to check for the presence of either of those options (-h or --
help) and print some help text

$ g++ --help
Usage: g++ [options] file...
Options:
 -pass-exit-codes Exit with highest error code from a phase
 --help Display this information
 --target-help Display target specific command line options
...

�8

Handling options

• We can now handle arguments and flags but options are different in that they
span more than one entry in the list 
 

• In the above example, in order to determine the name of the output file name,
one needs to check for the presence of -o and, if found, use the value of the
next element to obtain the output file name

• The parsing of the rest of the arguments must then continue from the
argument after that, i.e. two after the -o

{"./mpags-cipher", "-i", "plain.txt", "-o", "cipher.txt", "-c", "caesar", "-k", "17", "--encrypt"}

�9

Exercise: handle all the options

• Edit your program to handle -h, --help, --version, -i input_file and -o
output_file

• Print the appropriate output or, for the files, store the name of the file supplied
in a variable and print it out

• All arguments should be optional and available in any order

• The program should also print appropriate messages if there was a problem
parsing the arguments

�10

Using a library for the job

• You've had to write all the code to do the checking manually

• Once the program gets more complicated you may want to automate it

• Most software will use a library for doing this. A common one for C++ is
provided by Boost as boost::program_options

• Other languages have their own such as Python's argparse

�11

boost::program_options
#include <boost/program_options.hpp>
namespace po = boost::program_options;

int main(int argc, char* argv[])
{
 std::string input_file;

 po::options_description desc("Allowed options");
 desc.add_options()
 ("help", "produce help message")
 ("i", po::value(&input_file), "Name of input file");

 po::variables_map vm;
 po::store(po::parse_command_line(argc, argv, desc), vm);
 po::notify(vm);

 if (vm.count("help")) {
 cout << desc << "\n";
 return 0;
 }
 ...
}

�12

