(++ command-line arguments

Tom Latham

THE UNIVERSITY OF

WARWICK

Command-line arguments

* There are two main ways to pass information into a program:

- Interactively (text or GUI)

 Good for new users

- Step-by-step instructions

- Command-line arguments

* Reproducible

* 'Fire and forget'

An example: g++

- It would be a pain to have to deal with g++ interactively

$ g++
Enter name of C++ file: main.cpp

Enter name of output file: myprogram
Enable C++11 [y/n]: y

Enable all warnings [y/n]: y

$

- Instead we provide the program arguments up-front so we can run the same
command over-and-over again with minimal typing

$ g++ -Wall -Wextra -std=c++11 -0 myprogram main.cpp

Arguments to mpags-cipher

« We would like to be able to do the same with our program, e.g.

$./mpags-cipher -i plain.txt -o cipher.txt -c caesar -k 17 --encrypt

- But how do we get the information that the user supplies on the command-
line into variables within our program?

* The operating system splits the command line by whitespace and passes it to
the program as a list of strings:

{"./mpags-cipher", "-i", "plain.txt", "-0", "cipher.txt", "-¢", "caesar", "-k", "17", "--encrypt"}

« The values are passed to the main() function of our program

Reading arguments in (++

- Due to backward compatibility with C, the way that these appear in main()
are as two function arguments:

* argc is an integer - the number of arguments
- argv is a C-style array of C-style strings - the arguments themselves

» These are rather fiddly to work with, so best to immediately convert them into
a more usable form, a std::vector of std::string objects:

int main(int argc, char* argvf])

{

const std::vector<std::string> cmdLineArgs { argv, argv+argc };

» We can then loop over and/or access the individual arguments as with any
std::vector

Exercise: reading arguments in (++

- Edit your main function to print out each argument that was passed to the
program

* You'll need to use the code on the previous slide and add a 'for' loop

* Try running your program with different numbers of arguments and make sure
it adapts

Terminology

 Useful to distinguish between:
« argument

» These are non-optional parts which are fundamental to the
program. e.g. the list of .cpp files passed to g++

- option
 An optional argument, usually marked by --output=foo or -o foo
- flag

- Like an option but without the second part. Changes some
behaviour of the program. e.g. -Wall

Exercise: printing a help message

- A common command-line flag is -h or --help, which makes the program print
some information about how to use the program, e.qg.

$ g++ --help

Usage: g++ [options] file...

Options:
-pass-exit-codes EXxit with highest error code from a phase
--help Display this information
--target-help Display target specific command line options

- Edit your program to check for the presence of either of those options (-h or --
help) and print some help text

Handling options

- We can now handle arguments and flags but options are different in that they
span more than one entry in the list

"./mpags-cipher”, "-i", "plain.txt", "-o0", "cipher.txt", "-c", "caesar", "-k", "17", "--encrypt"}

-

* |n the above example, in order to determine the name of the output file name,
one needs to check for the presence of -0 and, if found, use the value of the

next element to obtain the output file name

» The parsing of the rest of the arguments must then continue from the
argument after that, i.e. two after the -o

Exercise: handle all the options

- Edit your program to handle -h, --help, --version, -i input_file and -o
output_file

- Print the appropriate output or, for the files, store the name of the file supplied
In a variable and print it out

 All arguments should be optional and available in any order

- The program should also print appropriate messages if there was a problem
parsing the arguments

10

Using a library for the job

* You've had to write all the code to do the checking manually
« Once the program gets more complicated you may want to automate it

- Most software will use a library for doing this. A common one for C++ is
provided by Boost as boost::program_options

- Other languages have their own such as Python's argparse

11

boost::program_options

#include <boost/program_options.hpp>
namespace po = boost::program_options;

int main(int argc, char* argv(])

{

std::string input_file;

po::options_description desc("Allowed options");
desc.add_options()

("help", "produce help message")
("i", po::value(&input_file), "Name of input file");

po::variables_map vm;
po::store(po::parse_command_line(argc, argv, desc), vm);
po::notify(vm);

if (vm.count("help")) {
cout << desc << "\n";
return 0;

}

12

