

1

C++ Program Flow Control
Mark Slater

2

Overview

1. Program Flow and Scope

2. Conditionals

3. Loops

4. Using Functions

3

1. Program Flow and Scope

4

● It would be difficult to do much with the language if a program was
just executed from top to bottom and you couldn't control what parts
of the code were executed

● There are a number of ways provided to gain this control over the
program:

➔ Conditionals
➔ Loops
➔ Functions (covered in detail next week)

Program Flow

5

● Before we go into the main ways of controlling program flow, it's
important to understand the idea of scope. This refers to 'blocks of
code' that are separated from each other by braces. You have already
encountered one such code block in the 'main' function

● Variables declared in one code block will not be visible in an 'outer'
block but will be present in an 'inner' block. When the end of a code
block is reached, any local variables declared and objects created in
that block are destroyed – this is termed going 'out of scope'

Program Flow – Scope (1)

6

#include <iostream>

int main()
{ // Start of outer block
 int a{43};
 int b{21};

 { // Start of inner block
 int a{12};
 int c{88};

 std::cout << c << std::endl;
 } // End of inner block

 std::cout << a << std::endl;

 c = a * b;
} // End of outer block

Program Flow – Scope (2)
Variables a and b are
initialised in the outer

code block

The value of 'c' is printed
(88 in this case)

With the closing brace,
the new variables, 'a'

and 'c', go out of scope
and are deleted. Hence,
when 'a' is printed, it's

the original value of 43.

This line will cause the compilation to
fail as, though 'c' was declared in the

inner block, it wasn't in the outer
block and so is not present here

We initialise another variable called 'a' in
the inner code block (this doesn't affect

the previous one!) in addition to a 'c'
variable

NOTE: This is a very bad idea!!

7

2. Conditionals

8

● Conditionals allows different code blocks to be executed based on the
outcome of a simple test. It uses a number of additional operators,
including:

➔ Comparison: ==
➔ Greater/Less than: > / <
➔ Greater/Less than or equal to: >= / <=
➔ Not equal to: !=

● The general syntax for this is shown here:
➔ The 'if' keyword is used
➔ The condition must evaluate to

true or false
➔ Don't confuse assignment ('=')

with comparison ('==')

Program Flow - Conditionals

if (a == b)
{
 // Do something...
}
else
{
 // Do something else instead
}

9

● There are several times in programming where you need to 'chain' many 'if'
statements together, e.g. to do different things depending on the setting of
a flag:

● These can become very hard to read

and are also difficult to control

Program Flow – Switch Statement

if (flag == 0)
{
 // Do something for this value
}
else if (flag == 1)
{
 // Do something else for this value
}
else
{
 // Do something for all other values
}

● In these cases, use the 'switch' statement:
➔ Only works on integer/char types
➔ Use the 'break' statement to leave a

'case' block
➔ Note: If you don't use the break

statement, program flow will
continue to the next 'case' block

switch (flag)
{
 case 0:
 // Do something for this value
 break;

 case 1:
 // Do something else for this value
 break;

 default:
 // Do something for all other values
 break;
}

10

3. Loops

11

● Loops are very useful for re-using code – a very important practise in all code
development, not just C++. Loops allow you to repeat a code block a set number of times
or until a condition is met. The first type of loop we will look at is the 'for' loop which has
a syntax:

for (<initialisation>; <condition>; <loop_process>) { <code_block> }

● Some useful points to note are:

➔ The initialisation step is performed at the start of the loop
➔ The loop continues until the condition evaluates to 'false'
➔ After every loop cycle, the process code is run
➔ Be careful about the position of the semi-colons!
➔ You can use 'break' to terminate a loop and 'continue' to skip to the next iteration
➔ You can edit any loop variables within the loop but they only exist within the

loop scope

Program Flow – Loops (1)

for (int i{0}; i < 10; ++i)
{
 // Do something 10 times
}

12

● The other type of loop we will look at is the 'while' loop. This is somewhat simpler than
the for loop as it just loops until a condition evaluates to 'false'. The syntax is:

while (<condition>) { <code_block> }

Some useful points to note are:

➔ You must declare any loop variables before the 'while' statement
➔ The evaluation of the condition is done at the beginning of each loop
➔ The loop will continue until the condition is false, so be careful of infinite loops!
➔ As before, use 'break' to get out of the loop and 'continue' to skip the iteration
➔ You can have the evaluation done at the end of the loop using:

Program Flow – Loops (2)

int i{0};
while (i < 10)
{
 // Do something 10 times
 ++i;
}

int i{0};
do
{
 ++i;
}
while (i < 10)

13

4. Using Functions

14

● As mentioned before, its good coding practise to reuse as much code as
possible. It can also be very useful to take advantage of code other people
have written so you don't have to write it yourself.

● The main way of doing this in C++ is through the use of functions that can
then be called in other code blocks. At this point, the program 'jumps' to
this code, executes what's there, and returns.

● To call functions, you give it's name along with any extra information
(arguments) it needs. If the function returns anything, this can then be
assigned to a variable or used directly

Program Flow – Using Functions

#include <iostream>
#include <math.h>

int main()
{
 // Will output '3'
 std::cout << sqrt(9) << std::endl;
}

Often need to include a different
'header' file so the compiler knows

what the function is

The sqrt function takes the number
you give it and returns the square

root of that number

15

● We have now covered enough material to start writing our cipher
program

● As we will be dealing with classical ciphers, we have to impose the
following restrictions:

➔ Letters must be only one case (we have chosen upper-case)
➔ Numbers must be changed to words
➔ Any other non-alphanumeric characters need to be removed

● The next exercise is to take some input from the user, change it based
on the above restrictions and then print it out

Transliterate User Input (Ex 5)

16

Transliterate User Input (Ex 5)
● To help you with writing the transliteration code, we’ll break it down into steps

and you should tackle each one in turn
● Check each individual step is working and outputting what you expect before

moving on to the next

● Note: In C++, you need to use single quotes ('') to reference a single character
rather than double quotes which reference a string

int main(){

 // Take each letter from user input and in each case:

 // - Convert to upper case

 // - Change numbers to words

 // - Ignore any other (non-alpha) characters

 // - In each case, add result to a string variable

 // print out the new string
}

Use the following code to
loop over user input

char in_char{'x'};
while(std::cin >> in_char)
{

// Loop until the user
// presses Enter then Ctrl+D

}

Best to use a ‘switch’
statement on the input char

Use Google to find functions that check
if a char is alpha and shift it to uppercase

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

