C++ Program Flow Control

Mark Slater

UNIVERSITYOF
BIRMINGHAM

Overview

1. Program Flow and Scope
2. Conditionals
3. Loops

4. Using Functions

RANE

s1hULs|HUP’

The L

1. Program Flow and Scope

Program Flow

* |t would be difficult to do much with the language if a program was

just executed from top to bottom and you couldn't control what parts
of the code were executed

* There are a number of ways provided to gain this control over the
program:
> Conditionals
> Loops

> Functions (covered in detail next week)

Program Flow - Scope (1)

* Before we go into the main ways of controlling program flow, it's
important to understand the idea of scope. This refers to 'blocks of
code' that are separated from each other by braces. You have already
encountered one such code block in the 'main’ function

* Variables declared in one code block will not be visible in an 'outer’
block but will be present in an 'inner' block. When the end of a code
block is reached, any local variables declared and objects created in
that block are destroyed - this is termed going 'out of scope'

Program Flow - Scope (2)

Variables a and b are

We initialise another variable called 'a' in
initialised in the outer

_ _ the inner code block (this doesn't affect
code block #include <iostream> the previous one!) in additiontoa 'c'
_ _ variable
int main() NOTE: This is a very bad idea!!
// Start of outer block
int a{43};
int b{21};
The value of 'c'is printed { /(Start ofgdinner block
(88 in this case) int a{l2};
int c{88};
std: :cout << ¢ << std::endl;
} // End of inner block
With the closing brace,

the new variables, 'a'

std: :cout << a << std::endl;
and 'c; go out of scope

d are dJeleted. H c=a*b: This line will cause the compilation to
and are deleted. Hence = ;o : n :

! fail as, though 'c' was declared in the
when 'a'isprinted,its = } // End of outer block &
the original value of 43.

inner block, it wasn't in the outer
block and so is not present here

2. Conditionals

Program Flow - Conditionals

* Conditionals allows different code blocks to be executed based on the
outcome of a simple test. It uses a number of additional operators,
including:

> Comparison: ==
> Greater/Less than: > / <
> Greater/Less than or equal to: >= / <=

> Not equal to: =

* The general syntax for this is shown here:
. . (.)
> The 'if' keyword is used Tf (a == b)
> The condition must evaluateto | |~ // Pe semething. ..
true or false oee
> Don't confuse assignment (|=|) // Do something else instead
}
J

with comparison ('==')

Program Flow - Switch Statement

* There are several times in programming where you need to 'chain’ many 'if’
statements together, e.g. to do different things depending on the setting of

d flag: if (flag == 0)
{

* These can become very hard to read)

else if (flag == 1)
{

and are also difficult to control | /1 Do somsthing else for this valus

else

{

// Do something for this value

// Do something for all other values

}
switch (flag)

U e o * |nthese cases, use the 'switch' statement:

// Do something for this value
break;

> Only works on integer/char types

case 1:

[/ Do something else for this value > Use the 'break' statement to leave a
1 1
default: case' block
// Do something for all other values :
| break; > Note: If you don't use the break

statement, program flow will
continue to the next 'case' block

3. Loops

10

Program Flow - Loops (1)

* Loops are very useful for re-using code - a very important practise in all code
development, not just C++. Loops allow you to repeat a code block a set number of times
or until a condition is met. The first type of loop we will look at is the 'for' loop which has
a syntax:

 Some useful points to note are: }

>

>

>

for (<initialisation>; <condition>; <loop_process>) { <code_block> }

for (int i{0}; i < 10; ++i)

{
// Do something 10 times

The initialisation step is performed at the start of the loop

The loop continues until the condition evaluates to 'false’

After every loop cycle, the process code is run

Be careful about the position of the semi-colons!

You can use 'break’ to terminate a loop and 'continue’ to skip to the next iteration

You can edit any loop variables within the loop but they only exist within the
loop scope

11

Program Flow - Loops (2)

* The other type of loop we will look at is the 'while' loop. This is somewhat simpler than
the for loop as it just loops until a condition evaluates to 'false’ The syntax is:

while (<condition>) { <code_block> }

,
int i{0};
while (i < 10)
{

// Do something 10 times
++i;

Some useful points to note are: }

\, S

> You must declare any loop variables before the 'while' statement

> The evaluation of the condition is done at the beginning of each loop

> The loop will continue until the condition is false, so be careful of infinite loops!
> Asbefore, use 'break’ to get out of the loop and 'continue’ to skip the iteration

> You can have the evaluation done at the end of the loop using:

’

int i{0};
do
{

++i;

}

while (i < 10)
\ y

12

4. Using Functions

13

Program Flow - Using Functions

* As mentioned before, its good coding practise to reuse as much code as
possible. It can also be very useful to take advantage of code other people
have written so you don't have to write it yourself.

* The main way of doing this in C++ is through the use of functions that can
then be called in other code blocks. At this point, the program 'jumps' to
this code, executes what's there, and returns.

* To call functions, you give it's name along with any extra information
(arguments) it needs. If the function returns anything, this can then be

assigned to a variable or used directly [Oftenneed to include a different
'header file so the compiler knows

#include <iostream> what the function is
#include <math.h> /

The sqrt function takes the number
int main() you give it and returns the square

{ // Will output '3' 4— root of that number

std: :cout << sqgrt(9) << std::endl;
}

14

Transliterate User Input (Ex 5)

* We have now covered enough material to start writing our cipher
program

* As we will be dealing with classical ciphers, we have to impose the
following restrictions:
> Letters must be only one case (we have chosen upper-case)
> Numbers must be changed to words

> Any other non-alphanumeric characters need to be removed

* The next exercise is to take some input from the user, change it based
on the above restrictions and then print it out

15

Transliterate User Input (Ex 5)

* To help you with writing the transliteration code, we'll break it down into steps
and you should tackle each one in turn

* Check each individual step is working and outputting what you expect before

moving on to the next

Use the following code to

loop over user input

int main () {
char in _char{'x'};
while(std::cin >> in_char)

// Take each letter from user input and in each case: {

// Loop until the user

// - Convert to upper case // presses Enter then Ctrl+D
}

// - Change numbers to words -

// - Ignore any other (non-alpha) characters R e
Best to use a ‘switch

// - In each case, add result to a strin&ariable statement on the input char

// print out the new string
I Use Google to find functions that check
if a char is alpha and shift it to uppercase

* Note: In C++, you need to use single quotes (") to reference a single character

rather than double quotes which reference a string 16

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

